Случайная последовательность чисел онлайн. Генератор случайных чисел онлайн


Заметим, что в идеале кривая плотности распределения случайных чисел выглядела бы так, как показано на рис. 22.3 . То есть в идеальном случае в каждый интервал попадает одинаковое число точек: N i = N /k , где N — общее число точек, k — количество интервалов, i = 1, …, k .

Рис. 22.3. Частотная диаграмма выпадения случайных чисел,
порождаемых идеальным генератором теоретически

Следует помнить, что генерация произвольного случайного числа состоит из двух этапов:

  • генерация нормализованного случайного числа (то есть равномерно распределенного от 0 до 1);
  • преобразование нормализованных случайных чисел r i в случайные числа x i , которые распределены по необходимому пользователю (произвольному) закону распределения или в необходимом интервале.

Генераторы случайных чисел по способу получения чисел делятся на:

  • физические;
  • табличные;
  • алгоритмические.

Физические ГСЧ

Примером физических ГСЧ могут служить: монета («орел» — 1, «решка» — 0); игральные кости; поделенный на секторы с цифрами барабан со стрелкой; аппаратурный генератор шума (ГШ), в качестве которого используют шумящее тепловое устройство, например, транзистор (рис. 22.4–22.5 ).

Рис. 22.4. Схема аппаратного метода генерации случайных чисел
Рис. 22.5. Диаграмма получения случайных чисел аппаратным методом
Задача «Генерация случайных чисел при помощи монеты»

Сгенерируйте случайное трехразрядное число, распределенное по равномерному закону в интервале от 0 до 1, с помощью монеты. Точность — три знака после запятой.

Первый способ решения задачи
Подбросьте монету 9 раз, и если монета упала решкой, то запишите «0», если орлом, то «1». Итак, допустим, что в результате эксперимента получили случайную последовательность 100110100.

Начертите интервал от 0 до 1. Считывая числа в последовательности слева направо, разбивайте интервал пополам и выбирайте каждый раз одну из частей очередного интервала (если выпал 0, то левую, если выпала 1, то правую). Таким образом, можно добраться до любой точки интервала, сколь угодно точно.

Итак, 1 : интервал делится пополам — и , — выбирается правая половина, интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 1 : интервал делится пополам — и , — выбирается правая половина , интервал сужается: .

По условию точности задачи решение найдено: им является любое число из интервала , например, 0.625.

В принципе, если подходить строго, то деление интервалов нужно продолжить до тех пор, пока левая и правая границы найденного интервала не СОВПАДУТ между собой с точностью до третьего знака после запятой. То есть с позиций точности сгенерированное число уже не будет отличимо от любого числа из интервала, в котором оно находится.

Второй способ решения задачи
Разобьем полученную двоичную последовательность 100110100 на триады: 100, 110, 100. После перевода этих двоичных чисел в десятичные получаем: 4, 6, 4. Подставив спереди «0.», получим: 0.464. Таким методом могут получаться только числа от 0.000 до 0.777 (так как максимум, что можно «выжать» из трех двоичных разрядов — это 111 2 = 7 8) — то есть, по сути, эти числа представлены в восьмеричной системе счисления. Для перевода восьмеричного числа в десятичное представление выполним:
0.464 8 = 4 · 8 –1 + 6 · 8 –2 + 4 · 8 –3 = 0.6015625 10 = 0.602 10 .
Итак, искомое число равно: 0.602.

Табличные ГСЧ

Табличные ГСЧ в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные, то есть никак не зависящие друг от друга, цифры. В табл. 22.1 приведен небольшой фрагмент такой таблицы. Обходя таблицу слева направо сверху вниз, можно получать равномерно распределенные от 0 до 1 случайные числа с нужным числом знаков после запятой (в нашем примере мы используем для каждого числа по три знака). Так как цифры в таблице не зависят друг от друга, то таблицу можно обходить разными способами, например, сверху вниз, или справа налево, или, скажем, можно выбирать цифры, находящиеся на четных позициях.

Таблица 22.1.
Случайные цифры. Равномерно
распределенные от 0 до 1 случайные числа
Случайные цифры Равномерно распределенные
от 0 до 1 случайные числа
9 2 9 2 0 4 2 6 0.929
9 5 7 3 4 9 0 3 0.204
5 9 1 6 6 5 7 6 0.269
… …

Достоинство данного метода в том, что он дает действительно случайные числа, так как таблица содержит проверенные некоррелированные цифры. Недостатки метода: для хранения большого количества цифр требуется много памяти; большие трудности порождения и проверки такого рода таблиц, повторы при использовании таблицы уже не гарантируют случайности числовой последовательности, а значит, и надежности результата.

Находится таблица, содержащая 500 абсолютно случайных проверенных чисел (взято из книги И. Г. Венецкого, В. И. Венецкой «Основные математико-статистические понятия и формулы в экономическом анализе»).

Алгоритмические ГСЧ

Числа, генерируемые с помощью этих ГСЧ, всегда являются псевдослучайными (или квазислучайными), то есть каждое последующее сгенерированное число зависит от предыдущего:

r i + 1 = f (r i ) .

Последовательности, составленные из таких чисел, образуют петли, то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются периодами .

Достоинством данных ГСЧ является быстродействие; генераторы практически не требуют ресурсов памяти, компактны. Недостатки: числа нельзя в полной мере назвать случайными, поскольку между ними имеется зависимость, а также наличие периодов в последовательности квазислучайных чисел.

Рассмотрим несколько алгоритмических методов получения ГСЧ:

  • метод серединных квадратов;
  • метод серединных произведений;
  • метод перемешивания;
  • линейный конгруэнтный метод.

Метод серединных квадратов

Имеется некоторое четырехзначное число R 0 . Это число возводится в квадрат и заносится в R 1 . Далее из R 1 берется середина (четыре средних цифры) — новое случайное число — и записывается в R 0 . Затем процедура повторяется (см. рис. 22.6 ). Отметим, что на самом деле в качестве случайного числа необходимо брать не ghij , а 0.ghij — с приписанным слева нулем и десятичной точкой. Этот факт отражен как на рис. 22.6 , так и на последующих подобных рисунках.

Рис. 22.6. Схема метода серединных квадратов

Недостатки метода: 1) если на некоторой итерации число R 0 станет равным нулю, то генератор вырождается, поэтому важен правильный выбор начального значения R 0 ; 2) генератор будет повторять последовательность через M n шагов (в лучшем случае), где n — разрядность числа R 0 , M — основание системы счисления.

Для примера на рис. 22.6 : если число R 0 будет представлено в двоичной системе счисления, то последовательность псевдослучайных чисел повторится через 2 4 = 16 шагов. Заметим, что повторение последовательности может произойти и раньше, если начальное число будет выбрано неудачно.

Описанный выше способ был предложен Джоном фон Нейманом и относится к 1946 году. Поскольку этот способ оказался ненадежным, от него очень быстро отказались.

Метод серединных произведений

Число R 0 умножается на R 1 , из полученного результата R 2 извлекается середина R 2 * (это очередное случайное число) и умножается на R 1 . По этой схеме вычисляются все последующие случайные числа (см. рис. 22.7 ).

Рис. 22.7. Схема метода серединных произведений

Метод перемешивания

В методе перемешивания используются операции циклического сдвига содержимого ячейки влево и вправо. Идея метода состоит в следующем. Пусть в ячейке хранится начальное число R 0 . Циклически сдвигая содержимое ячейки влево на 1/4 длины ячейки, получаем новое число R 0 * . Точно так же, циклически сдвигая содержимое ячейки R 0 вправо на 1/4 длины ячейки, получаем второе число R 0 ** . Сумма чисел R 0 * и R 0 ** дает новое случайное число R 1 . Далее R 1 заносится в R 0 , и вся последовательность операций повторяется (см. рис. 22.8 ).


Рис. 22.8. Схема метода перемешивания

Обратите внимание, что число, полученное в результате суммирования R 0 * и R 0 ** , может не уместиться полностью в ячейке R 1 . В этом случае от полученного числа должны быть отброшены лишние разряды. Поясним это для рис. 22.8 , где все ячейки представлены восемью двоичными разрядами. Пусть R 0 * = 10010001 2 = 145 10 , R 0 ** = 10100001 2 = 161 10 , тогда R 0 * + R 0 ** = 100110010 2 = 306 10 . Как видим, число 306 занимает 9 разрядов (в двоичной системе счисления), а ячейка R 1 (как и R 0 ) может вместить в себя максимум 8 разрядов. Поэтому перед занесением значения в R 1 необходимо убрать один «лишний», крайний левый бит из числа 306, в результате чего в R 1 пойдет уже не 306, а 00110010 2 = 50 10 . Также заметим, что в таких языках, как Паскаль, «урезание» лишних битов при переполнении ячейки производится автоматически в соответствии с заданным типом переменной.

Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x , y ) , возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

r i + 1 = mod(k · r i + b , M ) .

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью . Многие авторы называют линейную конгруэнтную последовательность при b = 0 мультипликативным конгруэнтным методом , а при b ≠ 0 — смешанным конгруэнтным методом .

Для качественного генератора требуется подобрать подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор M = 2 N , поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M , меньшего, чем 2 N : в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа r i + 1 ведут себя так же случайно, как и старшие, что положительно сказывается на всей последовательности случайных чисел в целом. В качестве примера можно привести одно из чисел Мерсенна , равное 2 31 – 1 , и таким образом, M = 2 31 – 1 .

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M , k и b . Теорема, которую мы приведем ниже, позволяет определить, возможно ли достижение периода максимальной длины для конкретных значений M , k и b .

Теорема . Линейная конгруэнтная последовательность, определенная числами M , k , b и r 0 , имеет период длиной M тогда и только тогда, когда:

  • числа b и M взаимно простые;
  • k – 1 кратно p для каждого простого p , являющегося делителем M ;
  • k – 1 кратно 4, если M кратно 4.

Наконец, в заключение рассмотрим пару примеров использования линейного конгруэнтного метода для генерации случайных чисел.

Было установлено, что ряд псевдослучайных чисел, генерируемых на основе данных из примера 1, будет повторяться через каждые M /4 чисел. Число q задается произвольно перед началом вычислений, однако при этом следует иметь в виду, что ряд производит впечатление случайного при больших k (а значит, и q ). Результат можно несколько улучшить, если b нечетно и k = 1 + 4 · q — в этом случае ряд будет повторяться через каждые M чисел. После долгих поисков k исследователи остановились на значениях 69069 и 71365 .

Генератор случайных чисел, использующий данные из примера 2, будет выдавать случайные неповторяющиеся числа с периодом, равным 7 миллионам.

Мультипликативный метод генерации псевдослучайных чисел был предложен Д. Г. Лехмером (D. H. Lehmer) в 1949 году.

Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

  • проверки на равномерность распределения;
  • проверки на статистическую независимость.

Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:

2) Частотный тест

Частотный тест позволяет выяснить, сколько чисел попало в интервал (m r – σ r ; m r + σ r ) , то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887) . Так как 0.7887 – 0.2113 = 0.5774 , заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 22.9 ).

Рис. 22.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5) , должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1) .

3) Проверка по критерию «хи-квадрат»

Критерий «хи-квадрат» (χ 2 -критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ , то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 22.10 . Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность p i попадания чисел в i -ый интервал (всего этих интервалов k ) равна p i = 1/k . И, таким образом, в каждый из k интервалов попадет ровно по p i · N чисел (N — общее количество сгенерированных чисел).

Рис. 22.10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по n i чисел (в сумме n 1 + n 2 + … + n k = N ). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел n i и «эталонным» p i · N . Сложим их, и в результате получим:

χ 2 эксп. = (n 1 – p 1 · N ) 2 + (n 2 – p 2 · N ) 2 + … + (n k – p k · N ) 2 .

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ 2 эксп. ), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i -го слагаемого, поделив его на p i · N :

Наконец, запишем полученное выражение более компактно и упростим его:

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

В табл. 22.2 приведены теоретические значения «хи-квадрат» (χ 2 теор. ), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или p — это вероятность того, что экспериментальное значение χ 2 эксп. будет меньше табулированного (теоретического) χ 2 теор. или равно ему .

Таблица 22.2.
Некоторые процентные точки χ 2 -распределения
p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
ν = 2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210
ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81
ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.72
ν = 12 3.571 5.226 8.438 11.34 14.85 21.03 26.22
ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
ν > 30 ν + sqrt(2ν ) · x p + 2/3 · x 2 p – 2/3 + O (1/sqrt(ν ))
x p = –2.33 –1.64 –0.674 0.00 0.674 1.64 2.33

Приемлемым считают p от 10% до 90% .

Если χ 2 эксп. много больше χ 2 теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения n i слишком далеко уходят от теоретических p i · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ 2 эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, … — они идеальны с точки зрения равномерности, и χ 2 эксп. будет практически нулевым, но вряд ли вы их признаете случайными.

Если χ 2 эксп. много меньше χ 2 теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения n i слишком близки к теоретическим p i · N и не могут рассматриваться как случайные.

А вот если χ 2 эксп. лежит в некотором диапазоне, между двумя значениями χ 2 теор. , которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.

При этом дополнительно надо иметь в виду, что все значения p i · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

Проверки на статистическую независимость

1) Проверка на частоту появления цифры в последовательности

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность p i выпадения i -ой цифры (от 0 до 9) равна 0.1.

2) Проверка появления серий из одинаковых цифр

Обозначим через n L число серий одинаковых подряд цифр длины L . Проверять надо все L от 1 до m , где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть n 2 = 2 и 2 серии длиной в 3 (999 и 666), то есть n 3 = 2 .

Вероятность появления серии длиной в L равна: p L = 9 · 10 –L (теоретическая). То есть вероятность появления серии длиной в один символ равна: p 1 = 0.9 (теоретическая). Вероятность появления серии длиной в два символа равна: p 2 = 0.09 (теоретическая). Вероятность появления серии длиной в три символа равна: p 3 = 0.009 (теоретическая).

Например, вероятность появления серии длиной в один символ равна p L = 0.9 , так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна 0.1 · 0.1 · 9, то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.

Частость появления серий подсчитывается по ранее разобранной нами формуле «хи-квадрат» с использованием значений p L .

Примечание: генератор может быть проверен многократно, однако проверки не обладают свойством полноты и не гарантируют, что генератор выдает случайные числа. Например, генератор, выдающий последовательность 12345678912345…, при проверках будет считаться идеальным, что, очевидно, не совсем так.

В заключение отметим, что третья глава книги Дональда Э. Кнута «Искусство программирования» (том 2) полностью посвящена изучению случайных чисел. В ней изучаются различные методы генерирования случайных чисел, статистические критерии случайности, а также преобразование равномерно распределенных случайных чисел в другие типы случайных величин. Изложению этого материала уделено более двухсот страниц.

Генератор чисел онлайн - это удобный инструмент, позволяющий получить необходимое количество чисел заданной разрядности и широчайшего диапазона. Нашему генератору случайных чисел можно найти множество применений! Например, можно провести конкурс в ВКонтакте и разыграть там плюшевого медведя в группе байкеров за рипост:)) Также мы будем весьма польщены, если с помощью него Вы решите определить выигрышный номер в какой-либо лотерее или же решите, на какое число ставить в казино. Очень надеемся, что кто-нибудь найдет свое счастливое число онлайн именно у нас!

Диапазон случайных чисел:

Количество:

Исключить повторения?

Сгенерировать числа

Пожалуйста, помогите нам развиваться: Расскажите друзьям про генератор!

Случайное | рандомное число онлайн в 1 клик

Числа окружают нас с самого рождения и играют важную роль в жизни. У многих людей сама работа связана с числами, кто-то полагается на удачу, заполняя числами лотерейные билеты, а кто-то придает им и вовсе мистическое значение. Так или иначе, иногда нам не обойтись без того, чтобы воспользоваться такой программой, как генератор рандомных чисел .

К примеру, вам необходимо организовать розыгрыш призов среди подписчиков вашей группы. Быстро и честно выбрать призеров и поможет наш генератор случайных чисел онлайн. Вам просто нужно, например, задать нужное количество рандомных чисел (по числу призеров) и максимальный диапазон (по числу участников, если им присвоены номера). Подтасовка в таком случае полностью исключается.

Эта программа может также послужить как генератор случайных чисел для лото. К примеру, вы купили билет и хотите полностью полагаться на случайность и удачу в выборе чисел. Тогда наш рандомайзер чисел поможет заполнить ваш лотерейный билет.

Как сгенерировать случайное число: инструкция

Программа случайных чисел работает очень просто. Вам даже не нужно загружать ее на компьютер – все делается в окне браузера, где открыта эта страница. Генерация случайных чисел происходит в соответствии с заданным количеством чисел и их диапазоном – от 0 до 999999999. Чтобы сгенерировать число онлайн, необходимо:

  1. Выбрать диапазон, в котором вы хотите получить результат. Возможно, вы хотите отсечь числа до 10 или, скажем, 10000;
  2. Исключить повторения – выбрав этот пункт, вы заставите рандомизатор чисел предлагать вам только уникальные комбинации в рамках определенного диапазона;
  3. Выбрать количество чисел – от 1 до 99999;
  4. Нажать кнопку «Сгенерировать числа».

Сколько бы вы чисел не хотели получить в результате, генератор простых чисел выдаст весь результат сразу и вы сможете увидеть его на этой странице, листая поле с числами при помощи мышки или тачпада.

Теперь вы можете воспользоваться готовыми числами так, как вам это необходимо. Из поля с числами вы можете скопировать результат для публикации в группе или отправке по почте. А чтобы результат не вызывал ни у кого сомнений, сделайте скриншот этой страницы, на которой будут хорошо видны параметры рандомизатора чисел и результаты работы программы. Изменить числа в поле невозможно, поэтому возможность подтасовки исключается. Надеемся, вам помог наш сайт и генератор случайных чисел.

  • Tutorial

Вы когда-нибудь задумывались, как работает Math.random()? Что такое случайное число и как оно получается? А представьте вопрос на собеседовании - напишите свой генератор случайных чисел в пару строк кода. И так, что же это такое, случайность и возможно ли ее предсказать?

Меня очень увлекают различные IT головоломки и задачки и генератор случайных чисел - одна из таких задачек. Обычно в своем телеграм канале я разбираю всякие головоломки и разные задачи с собеседований. Задача про генератор случайных чисел набрала большую популярность и мне захотелось увековечить ее в недрах одного из авторитетных источников информации - то бишь здесь, на Хабре.

Данный материал будет полезен всем тем фронтендерам и Node.js разработчикам, кто на острие технологий и хочет попасть в блокчейн проект/стартап, где вопросы про безопасность и криптографию, хотя бы на базовом уровне, спрашивают даже у фронтендеров.

Генератор псевдослучайных чисел и генератор случайных чисел

Для того, чтобы получить что-то случайное, нам нужен источник энтропии, источник некого хаоса из который мы будем использовать для генерации случайности.

Этот источник используется для накопления энтропии с последующим получением из неё начального значения (initial value, seed), которое необходимо генераторам случайных чисел (ГСЧ) для формирования случайных чисел.

Генератор ПсевдоСлучайных Чисел использует единственное начальное значение, откуда и следует его псевдослучайность, в то время как Генератор Случайных Чисел всегда формирует случайное число, имея в начале высококачественную случайную величину, которая берется из различных источников энтропии.

Энтропия - это мера беспорядка. Информационная энтропия - мера неопределённости или непредсказуемости информации.
Выходит, что чтобы создать псевдослучайную последовательность нам нужен алгоритм, который будет генерить некоторую последовательность на основании определенной формулы. Но такую последовательность можно будет предсказать. Тем не менее, давайте пофантазируем, как бы могли написать свой генератор случайных чисел, если бы у нас не было Math.random()

ГПСЧ имеет некоторый алгоритм, который можно воспроизвести.
ГСЧ - это получение чисел полностью из какого либо шума, возможность просчитать который стремится к нулю. При этом в ГСЧ есть определенные алгоритмы для выравнивания распределения.

Придумываем свой алгоритм ГПСЧ

Генератор псевдослучайных чисел (ГПСЧ, англ. pseudorandom number generator, PRNG) - алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).
Мы можем взять последовательность каких-то чисел и брать от них модуль числа. Самый простой пример, который приходит в голову. Нам нужно подумать, какую последовательность взять и модуль от чего. Если просто в лоб от 0 до N и модуль 2, то получится генератор 1 и 0:

Function* rand() { const n = 100; const mod = 2; let i = 0; while (true) { yield i % mod; if (i++ > n) i = 0; } } let i = 0; for (let x of rand()) { if (i++ > 100) break; console.log(x); }
Эта функция генерит нам последовательность 01010101010101… и назвать ее даже псевдослучайной никак нельзя. Чтобы генератор был случайным, он должен проходить тест на следующий бит. Но у нас не стоит такой задачи. Тем не менее даже без всяких тестов мы можем предсказать следующую последовательность, значит такой алгоритм в лоб не подходит, но мы в нужном направлении.

А что если взять какую-то известную, но нелинейную последовательность, например число PI. А в качестве значения для модуля будем брать не 2, а что-то другое. Можно даже подумать на тему меняющегося значения модуля. Последовательность цифр в числе Pi считается случайной. Генератор может работать, используя числа Пи, начиная с какой-то неизвестной точки. Пример такого алгоритма, с последовательностью на базе PI и с изменяемым модулем:

Const vector = [...Math.PI.toFixed(48).replace(".","")]; function* rand() { for (let i=3; i<1000; i++) { if (i > 99) i = 2; for (let n=0; n Но в JS число PI можно вывести только до 48 знака и не более. Поэтому предсказать такую последовательность все так же легко и каждый запуск такого генератора будет выдавать всегда одни и те же числа. Но наш генератор уже стал показывать числа от 0 до 9.

Мы получили генератор чисел от 0 до 9, но распределение очень неравномерное и каждый раз он будет генерировать одну и ту же последовательность.

Мы можем взять не число Pi, а время в числовом представлении и это число рассматривать как последовательность цифр, причем для того, чтобы каждый раз последовательность не повторялась, мы будем считывать ее с конца. Итого наш алгоритм нашего ГПСЧ будет выглядеть так:

Function* rand() { let newNumVector = () => [...(+new Date)+""].reverse(); let vector = newNumVector(); let i=2; while (true) { if (i++ > 99) i = 2; let n=-1; while (++n < vector.length) yield (vector[n] % i); vector = newNumVector(); } } // TEST: let i = 0; for (let x of rand()) { if (i++ > 100) break; console.log(x) }
Вот это уже похоже на генератор псевдослучайных чисел. И тот же Math.random() - это ГПСЧ, про него мы поговорим чуть позже. При этом у нас каждый раз первое число получается разным.

Собственно на этих простых примерах можно понять как работают более сложные генераторы случайных числе. И есть даже готовые алгоритмы. Для примера разберем один из них - это Линейный конгруэнтный ГПСЧ(LCPRNG).

Линейный конгруэнтный ГПСЧ

Линейный конгруэнтный ГПСЧ(LCPRNG) - это распространённый метод для генерации псевдослучайных чисел. Он не обладает криптографической стойкостью. Этот метод заключается в вычислении членов линейной рекуррентной последовательности по модулю некоторого натурального числа m, задаваемой формулой. Получаемая последовательность зависит от выбора стартового числа - т.е. seed. При разных значениях seed получаются различные последовательности случайных чисел. Пример реализации такого алгоритма на JavaScript:

Const a = 45; const c = 21; const m = 67; var seed = 2; const rand = () => seed = (a * seed + c) % m; for(let i=0; i<30; i++) console.log(rand())
Многие языки программирования используют LСPRNG (но не именно такой алгоритм(!)).

Как говорилось выше, такую последовательность можно предсказать. Так зачем нам ГПСЧ? Если говорить про безопасность, то ГПСЧ - это проблема. Если говорить про другие задачи, то эти свойства - могут сыграть в плюс. Например для различных спец эффектов и анимаций графики может понадобиться частый вызов random. И вот тут важны распределение значений и перформанс! Секурные алгоритмы не могут похвастать скоростью работы.

Еще одно свойство - воспроизводимость. Некоторые реализации позволяют задать seed, и это очень полезно, если последовательность должна повторяться. Воспроизведение нужно в тестах, например. И еще много других вещей существует, для которых не нужен безопасный ГСЧ.

Как устроен Math.random()

Метод Math.random() возвращает псевдослучайное число с плавающей запятой из диапазона = crypto.getRandomValues(new Uint8Array(1)); console.log(rvalue)
Но, в отличие от ГПСЧ Math.random(), этот метод очень ресурсоемкий. Дело в том, что данный генератор использует системные вызовы в ОС, чтобы получить доступ к источникам энтропии (мак адрес, цпу, температуре, etc…).

Понятный и удобный генератор чисел онлайн, который пользуется в последнее время популярность. Наибольшее распространение получил при розыгрыше призов в социальных сетях, среди пользователей.

Так-же имеет популярность в других сферах. Также у нас есть или паролей и чисел.

Наш генератор случайных рандомных чисел онлайн.

Наш генератор рандомайзер не требует его скачивать на ваш персональный ПК. Все происходит в режиме генератор числа онлайн. Просто укажите такие параметры, как: диапазон чисел онлайн, в котором будут случайным образом выбраны числа. Так же укажите количество чисел, которое будет выбрано.

Для примера, у Вас есть группа Вконтакте. В группе вы разыгрываете 5 призов, среди числа участников, которые сделают репост записи. С помощью специального приложения, мы получили список участников. Каждому присвоили свой порядковый номер для чисел онлайн.

Теперь переходим к нашему онлайн генератору и указываем диапазон чисел (количество участников). Например, задаем, что чисел онлайн необходимо 5, так как у нас 5 призов. Теперь жмем кнопку генерации. Тогда получаем 5 случайных чисел онлайн, в диапазоне от 1 до 112 включительно. Сгенерированые 5 чисел онлайн будут соответствовать порядковому номеру пяти участников, которые стали победителями розыгрыша. Все просто и удобно.

Еще один плюс генератор случайных чисел чисел в том, что все числа онлайн выдаются рандомным образом. Тоесть повлиять на него, либо вычислить, какое число будет следующем, не представляется возможным. Что делает сказать, честным и надежным, а администрацию, которая разыгрывает призы с помощью нашего бесплатного генератора, честной и порядочной в лице участников конкурса. А если вы сомневаетесь относительно какого-то решения, то вы можете воспользоваться нашим

Почему случайный число генератор лучший?

Дело в том, что генератор чисел онлайн доступен на любом устройстве и всегда онлайн. Вы можете совершенно честно сгенерировать любое число для любого вашего замысла. А та же для проекта использовать генератор случайных чисел онлайн. Особенно если надо определить победителя игры или для иного числа онлайн. Дело в том, что случайный число генератор генерирует любые числа совершенно случайно без алгоритмов. Это по сути как для чисел.

Генератор случайных чисел онлайн бесплатно!

Генератор случайных чисел онлайн бесплатно для каждого. Вам не нужно скачивать или покупать любой генератор случайных чисел онлайн для розыгрыша. Надо просто зайти на наш сайт и получить нужный вам результат рандом. У нас есть не только случайный число генератор но и нужный многим который точно поможет вам выиграть в лотерею. Настоящий генератор случайных чисел онлайн для лотерей это абсолютная случайность. Которую наш сайт способен вам обеспечить.

Случайный число онлайн

Если вы ищете случайный число онлайн то мы создали этот ресурс именно для вас. Мы постоянно совершенствуем наши алгоритмы. Вы здесь получите настоящий случайный число генератор. Он обеспечит любые потребности как нужный вам случайный генератор совершенно бесплатно и в любое время. Создавайте с нами случайные числа онлайн. Будьте всегда уверены в полной случайности каждого сгенерированного числа.

Генератор случайных чисел рандом

Наш генератор случайных чисел рандом выбирает числа совершенно случайно. Не имеет никакого значения день или час у вас на компьютере. Это настоящий слепой выбор. Генератор рандом просто перетасовывает в случайном порядке все числа. А потом случайно выбирает из них заданную вами количество случайных чисел. Иногда числа могут повторяться, что доказывает полную случайность генератора чисел рандом.

Рандом онлайн

Рандом самый верный вариант для розыгрыша. Онлайн генератор это действительно случайный выбор. Вы защищены от любого влияния на выбор случайного числа. Сняв процесс рандом онлайн выбора победителя на видео. Это все что вам нужно. Устраивайте честные розыгрыши в сети с нашим онлайн генератором чисел. Вы получаете победителей и довольных игроков. А мы радость что смогли угодить вам нашим рандом генератором.

И т. д., и используется владельцами аккаунтов для привлечения новой аудитории в сообщество.

Результат таких розыгрышей часто зависит от удачи пользователя, так как получатель приза определяется случайным образом.

Для такого определения организаторы розыгрышей почти всегда используют генератор случайных чисел онлайн или предустановленный, распространяющийся бесплатно.

Выбор

Довольно часто выбрать такой генератор может быть сложно, так как их функционал достаточно различен – у некоторых он существенно ограничен, у других – довольно широк.

Реализуется достаточно большое количество таких сервисов, но сложность в том, что они отличаются по сфере действия.

Многие, например, привязаны своим функционалом к определенной социальной сети (например, многие приложения-генераторы во работают только со ссылками этой ).

Наиболее простые генераторы просто определяют случайно число в заданном диапазоне.

Это удобно потому, что не связывает результат с определенным постом, а значит, могут применяться при розыгрышах вне социальной сети и в различных иных ситуациях.

Иного применения у них, по сути, нет.

Совет! При выборе наиболее подходящего генератора важно учитывать то, для каких целей он будет использоваться.

Технические характеристики

Для наиболее быстрого процесса выбора оптимального онлайн-сервиса генерации случайных чисел в таблице, представленной ниже, приведены основные технические характеристики и функционал таких приложений.

Таблица 1. Особенности функционирования онлайн приложений для генерации случайного числа
Название Социальная сеть Несколько результатов Выбор из списка чисел Онлайн-виджет для сайта Выбор из диапазона Отключение повторений
RandStuff Да Да Нет Да Нет
Cast Lots Официальный сайт или ВКонтакте Нет Нет Да Да Да
Случайное число Официальный сайт Нет Нет Нет Да Да
Рандомус Официальный сайт Да Нет Нет Да Нет
Случайные числа Официальный сайт Да Нет Нет Нет Нет

Подробнее все приложения, рассмотренные в таблице, описаны ниже.

RandStuff

Воспользоваться данным приложением в режиме онлайн можно по ссылке на его официальный сайт http://randstuff.ru/number/ .

Это простой генератор случайных чисел, отличающийся быстрой и стабильной работой.

Он успешно реализуется как в формате отдельного самостоятельного приложения на официальном сайте, так и в виде приложения в .

Особенность данного сервиса в том, что он может выбрать случайное число как из указанного диапазона, так и из определенного списка чисел, которые можно указать на сайте.

  • Стабильная и быстрая работа;
  • Отсутствие непосредственной привязки к социальной сети;
  • Выбрать можно как одно, так и несколько чисел;
  • Можно выбрать только среди указанных чисел.

Отзывы пользователей о данном приложении таковы: «Определяем через этот сервис победителей в группах В Контакте. Спасибо», «Вы лучшие», «Пользуюсь только этим сервисом».

Cast Lots

Данное приложение представляет из себя простой функциональный генератор, реализующийся на официальном сайте, в виде приложения ВКонтакте.

Также существует виджет генератора для вставки на свой сайт.

Основным отличием от предыдущего описанного приложения является то, что это позволяет отключить повторение результата.