Отрицательные числа. Общее представление о целых числах

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным (все станет на свои места, как только ты узнаешь, что такое натуральные числа);
  • ноль - " " (куда уж без него?)

Множество целых чисел обозначается буквой.

Натуральные числа

«Бог создал натуральные числа , всё остальное – дело рук человеческих» (c) Немецкий математик Кронекер.

Натуральные числа – это числа, которые мы употребляем для счета предметов и именно на этом основывается их история возникновения – необходимости считать стрелы, шкуры и т.д.

Множество натуральных чисел обозначается буквой.

Соответственно, в это определение не входит (не можешь же ты посчитать то, чего нет?) и тем более не входят отрицательные значения (разве бывает яблоко?).

Кроме этого, не входят и все дробные числа (мы также не можем сказать « у меня есть ноутбука», или «я продал машины»)

Любое натуральное число можно записать с помощью 10 цифр:

Таким образом, – это не цифра. Это число. Из каких цифр оно состоит? Правильно, из цифр и.

Сложение

Что интересного ты можешь сказать про эту процедуру? Конечно, ты сейчас ответишь «от перестановки слагаемых значение суммы не меняется»: . Казалось бы, примитивное, знакомое с первого класса правило, однако, при решении больших примеров оно моментально забывается. Не забывай про него - используй группировку, чтобы облегчить себе процесс подсчета и снизить вероятность ошибок, ведь на ЕГЭ калькулятора у тебя не будет.

Вычитание

При вычитании мы также можем группировать вычитаемые числа, например: . А что, если вычитание чередуется в примере со сложением? Так же можно группировать, ответишь ты, и это правильно. Только прошу, не забывай о знаках перед числами, например: . Помни: неправильно проставленные знаки приведут к ошибочному результату.

Умножение

Очевидно, что от перемены мест множителей значение произведения также не изменится: . Я не буду говорить тебе «используй это при решении примеров» (ты и сам понял намек, правда?), а лучше расскажу, как быстро умножать некоторые числа в уме. Итак, внимательно смотри таблицу:

И еще немного об умножении. Конечно, ты помнишь два особых случая … Догадываешься о чем я? Вот об этом:

Ах да, еще рассмотрим признаки делимости. Всего существует 7 правил по признакам делимости, из которых первые 3 ты точно уже знаешь! А вот остальные совсем не сложно запомнить. Смотри таблицу:


Первые три правила ты, конечно же, знаешь. Четвертое и пятое легко запомнить – при делении на и мы смотрим, делится ли на это сумма цифр, составляющих число. При делении на мы обращаем внимание на две последние цифры числа - делится ли число, которое они составляют на? При делении на число должно одновременно делиться на и на. Вот и вся премудрость.

Ты сейчас думаешь - «зачем мне все это»? Во-первых, ЕГЭ проходит без калькулятора и данные правила помогут тебе сориентироваться в примерах, а во-вторых, ты же слышал задачи про НОД и НОК ? Знакомая аббревиатура? Начнем вспоминать и разбираться.

Наибольший общий делитель (НОД)

Допустим, у тебя есть два числа: и. На какое наибольшее число делятся оба этих числа? Ты, не задумываясь, ответишь, потому что знаешь, что:

Какие цифры в разложении общие? Правильно, . Вот и твой ответ был. Держа в голове этот простой пример, ты не забудешь алгоритм, как находить НОД . Попробуй «выстроить» его у себя в голове. Получилось?

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Понимаешь, зачем нам нужны были признаки делимости? Чтобы ты посмотрел на число и мог начать делить без остатка.

Для примера найдем НОД чисел и.

Первое число - .

Глядя на него, ты сразу можешь сказать, что оно делится на, запишем:

больше разделить ни на что нельзя, а вот можно – и, получаем:

Возьмем еще одно число – .

По признакам делимости оно должно без остатка делиться на, так как на заканчивается. Делим:

Проанализируем изначальное число.

На оно делиться не может (последняя цифра – нечетная), – не делится на, значит число тоже не делится на, на и на также не делится (сумма цифр, входящих в число, не делится на и на) на тоже не делится, так как не делится на и, на тоже не делится, так как не делится на и. Осталось проверить деление на. нельзя разделить на нацело, значит, число можно разложить только на и.

А теперь найдем НОД этих чисел (и). Какое это число? Правильно, .

Потренируемся?

Задача №1. Найти НОД

Справился? Сравним ответы и ход мыслей:

Найти НОД

1) Делю сразу на, так как оба числа 100% делятся на:

2) Разделю на оставшиеся большие числа (и), так как и без остатка делятся на (при этом, раскладывать не буду – он и так общий делитель):

3) Оставлю и в покое и начну рассматривать числа и. Оба числа точно делятся на (заканчиваются на четные цифры (в таком случае представляем как, а можно разделить на)):

4) Работаем с числами и. Есть ли у них общие делители? Так легко, как в предыдущих действиях, и не скажешь, поэтому дальше просто разложим их на простые множители:

5) Как мы видим, мы были правы: у и общих делителей нет, и теперь нам нужно перемножить.
НОД

Задача №2. Найти НОД

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Точно, НОД, а я изначально не проверила признак делимости на, и, возможно, не пришлось бы делать столько действий. Но ты-то проверил, верно? Молодец! Как видишь, это совсем несложно.

Наименьшее общее кратное (НОК)

Допустим, у тебя есть два числа – и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил:

  1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным (как в нашем случае).
    Найди у следующих чисел:

    Конечно, ты без труда справился с этой задачей и у тебя получились ответы – , и.
    Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.
    Например, так как не делится без остатка на.

  2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.
    Найди НОК у следующих чисел:

Посчитал? Вот ответы – , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

Потренируемся? Попробуем вместе найти НОК (345; 234)

Раскладываем каждое число:

Почему я сразу написал? Вспомни признаки делимости на: делится на (последняя цифра – четная) и сумма цифр делится на. Соответственно, можем сразу разделить на, записав ее как.

Теперь выписываем в строчку наиболее длинное разложение – второе:

Добавим к нему числа из первого разложения, которых нет в том, что мы выписали:

Заметь: мы выписали все кроме, так как она у нас уже есть.

Теперь нам необходимо все эти числа перемножить!

Попробуй самостоятельно найти НОК следующих чисел:

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время – 2 минуты, правда я знаю одну хитрость, которую предлагаю тебе открыть собственноручно.

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все. Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:


Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.


Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа – «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Отрицательные числа можно складывать, вычитать, умножать и делить – все как в натуральных. Казалось бы, что в них такого особенного? А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание». Действительно, из вычесть – вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел ».

Отрицательные числа долго не признавались людьми. Так, Древний Египет, Вавилон и Древняя Греция – светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии. Как ты думаешь, с чем связано это признание? Правильно, отрицательными числами стали обозначать долги (иначе - недостачу). Считалось, что отрицательные числа – это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие. Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи – это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)). Далее европейцы пришли к тому, что отрицательные числа могут обозначать не только долги, но и нехватку чего бы то ни было, правда, признавали это не все.

Так, в XVII веке Паскаль считал что. Как думаешь, чем он это обосновывал? Верно, «ничто не может быть меньше НИЧЕГО». Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом – минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку – он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике – особенное число. С первого взгляда, это ничто: прибавить, отнять – ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального. Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная. След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего». Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто – ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа). Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » – составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» - пишет американский математик Чарльз Сейф. Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел .

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+ », если исходные числа были с одинаковыми знаками, и знак «− », если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел :

+ \cdot + = +

+ \cdot - = -

- \cdot + = -

- \cdot - = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+ », если количество множителей с отрицательным знаком четное и «− », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+ », а если знаки исходных чисел разные, то ставится знак «− ».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a - переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) - сочетательное свойство сложения;
  3. a \cdot b = b \cdot a - переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) - сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c - распределительное свойство умножения.

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС , Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

Хасаншина Алия, Кулакли Алёна 8 класс

Проектная работа учащихся 8 класса для 5 класса в рамках проведения недели математики

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

«В мире положительных и отрицательных чисел» Авторы работы: Кулакли Алёна Хасаншина Алия ГОУ СОШ № 735

Что такое отрицательные числа? Наглядно представить себе дробь может каждый: для этого достаточно посмотреть на разрезанные арбуз или на огород, разделенный на грядки. Но как представить число – 2? Ведь нельзя ни отмерить – 2 м ткани, ни отрезать – 2 куска хлеба… Зачем же нужны такие странные числа с ещё более странными правилами действий над ними?

Итак, давайте попробуем разобраться: 1. Зачем нужны отрицательные числа? 2. Когда и где они появились? 3. Какими свойствами обладают? 4. Где находят применение? 5. С чем ассоциируются?

Зачем нужны отрицательные числа?

Существует много вещей, которые могут как увеличиваться, так и уменьшаться. Если на товар большой спрос, предприятие увеличивает план по его выпуску, а если товар не пользуется спросом, то план приходится уменьшать. При обработке детали на станке ее масса уменьшается, а если к ней приваривают другую деталь, то масса увеличивается. Увеличивается и уменьшается с течением времени температура воздуха и т.д.

Задача Сейчас отцу 55 лет, а сыну 31 год. Через сколько лет отец будет вдвое старше сына? Решение: Пусть через х лет отец будет вдвое старше сына, тогда отцу будет (х+55) лет, а сыну (х+31)лет. Получаем уравнение: 2(х+31)=х+55 2х+62=х+55 2х – х = 55 – 62 х = – 7 Ответ: семь лет назад отец был вдвое старше сына.

Вывод: Положительные и отрицательные числа служат для описания изменений величин. Если величина растет, то говорят, что ее изменение положительно (+) , а если она убывает, то изменение называют отрицательным (–) .

Немного истории

Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда. Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бессмысленными.

Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов. Брахмагупта VII век “…имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму”.

В Древнем Египте, Вавилоне и Древней Греции отрицательные числа не прижились. Знаменитый Диофант Александрийский (III век до н.э.) утверждал, что уравнение 4x+20 = 0 – абсурдно. Диофант Александрийский

В Европе отрицательные числа появились благодаря Леонардо Пизанскому (Фибоначчи), который тоже ввёл их для решения финансовых задач с долгами - в 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков. Леонардо Пизанский (Фибоначчи) (1170 – 1250)

До XVII века отрицательные числа были “в загоне” и даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0, ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными… Блез Паскаль (1623–1662)

Признанию отрицательных чисел способствовали работы французского ученого Рене Декарта. Он предложил геометрическое истолкование положительных и отрицательных чисел - ввел координатную прямую (1637г.). Рене Декарт (1596 - 1650)

Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке выдающимся ирландским математиком Уильямом Гамильтоном и немецким ученым Германом Грассманом. Уильям Гамильтон (1806 – 1865) Герман Грассман (1809 – 1877)

Немного теории

Расположение чисел на координатной прямой

Сравнение чисел любое положительное число больше нуля любое отрицательное число меньше нуля любое положительное число больше отрицательного Пример: 7 > 0; - 4 - 4 .

Модуль числа Пример: | 5 | = 5 ; | - 4 | = 4; | 0 | = 0.

Противоположные числа Пример: - 2 и 2 – противоположные числа, т.к. они имеют разные знаки и |- 2| = |2|.

Сложение чисел Пример: 5 + 7 = 12 - 4 + 8 = + (8 – 4) = 4 - 2 + 2 = 0 -3 + (- 2) = - 5 - 8 + 5 = - (8 – 5) = - 3 противоположные числа дают в сумме 0

Вычитание чисел

Умножение и деление положительных и отрицательных чисел Уистен Оден (1809 – 1877) английский поэт «Минус на минус – всегда только плюс. Отчего так бывает, сказать не берусь».

Может ли число менять знак?

Где мы применяем положительные и отрицательные числа?

Термометр холодно тепло (-) (+)

Шкала времени … Млн. лет до н.э. … XIV век до н.э. XIV век н.э. … XVI век н.э. … XX век н.э. … До нашей эры (-) Наша эра (+)

Три состояния воды (-) (+)

Медицина: близорукость и дальнозоркость

Высота и глубина + 0 -

Отрицательные числа появились значительно позже положительных, отрицательными числами обычно обозначали долг. Наверно, поэтому на подсознательном уровне человек воспринимает положительное – как «нечто хорошее», а отрицательное – как «нечто плохое». Судите сами:

Убытки и прибыль

Отрицательные и положительные эмоции

Деградация и развитие

Добро и зло

Война и мир

Давайте подумаем… И в заключении нашей работы мы хотим предложить Вам небольшое задание: попробуйте найти в тексте, напечатанном на следующей странице, положительные и отрицательные величины и… сделайте выводы.

«…Еще не так давно Аральское море было четвертым по величине озером в мире, славилось богатейшими природными запасами, а зона Приаралья считалась процветающей и биологически богатой природной средой. Уникальная замкнутость и разнообразие Арала не оставляли никого равнодушным. И неудивительно, что озеро получило такое название. Ведь слово " арал " в переводе с тюркского языка означает "остров". Однако из-за неразумной деятельности "властелина природы" - человека, особенно в последние десятилетия, ситуация резко изменилась. Уже к 1995 году море потеряло три четверти водного объема, а площадь поверхности сократилась более чем наполовину. Ныне обнажилось и подверглось опустыниванию свыше 33 тысяч квадратных километров морского дна. Береговая линия отступила на 100-150 километров. Соленость воды возросла в 2,5 раза. А само море разделилось на две части - Большой Арал и Малый Арал. Одним словом, Арал высыхает, Арал умирает…»

Аральское море Подумаем?... (-) (+)

Исла в памяти компьютера

Существуют два способа представления чисел в памяти ЭВМ. Они называются так: форма с фиксированной точкой и форма с плавающей точкой. Форма с фиксированной точкой применяется к целым числам, форма с плавающей точкой - к вещественным числам (целым и дробным). Под точкой здесь подразумевается знак-разделитель целой и дробной части числа.

Целые отрицательные числа.

Разберемся, как представляются отрицательные числа. Казалось бы, для этого достаточно заменить 0 на 1 в старшем (31-м) разряде ячейки памяти. Однако реально это делается несколько сложнее. Для представления отрицательных целых чисел используется дополнительный код.

Дополнительным кодом двоичного числа X в N-разрядной ячейке является число, дополняющее его до значения 2.

Получить дополнительный код можно следующим путем:

  1. записать внутреннее представление положительного числа X;
  2. записать обратный код этого числа заменой во всех разрядах 0 на 1 и 1 на 0;
  3. к полученному числу прибавить 1.

Шестнадцатеричная форма результата:

Старший разряд в представлении любого отрицательного числа равен 1. Следовательно, он указывает на знак числа и поэтому называется знаковым разрядом.

Почему отрицательные числа представляются в дополнительном коде? Дело в том, что в этом случае операция вычитания двух чисел сводится к сложению с дополнительным кодом вычитаемого, и процессору достаточно уметь лишь складывать числа. В самом деле:

А - В = А + (-В).

Если значение (-В) будет иметь форму дополнительного кода, то в памяти ЭВМ получится правильный результат.

Проверим, действительно ли в ячейке памяти получится О в результате сложения числа 5628 с числом -5628 в форме дополнительного кода.

00000000 00000000 00010101 11111100 + 11111111 11111111 11101010 000000100 =

1 00000000 00000000 00000000 00000000

Что и требовалось доказать! Единица в старшем разряде, получаемая при сложении, выходит за границу разрядной сетки машинного слова и исчезает.

Двоичное 32-разрядное число 2 31 является «отрицательным самому себе». Получим его дополнительный код:

Определим по этим правилам внутреннее представление числа -562810 в 32-разрядной ячейке.

Полученный код используется для представления значения

231 = -2147483648.

Следовательно, диапазон представления целых чисел в 32-разрядном машинном слове:

231 <= Х <= 231-1,

2147483648 <= Х <= 2147483647.

В общем случае для N-разрядного машинного слова этот диапазон такой:

2N-1 <= X <= 2N-1-1.

В современных компьютерах часто используется 16- разрядное представление целых чисел. В этом случае их диапазон следующий:

215 <= Х <= 215-1,

32768 <= Х <= 32767.

Выход результатов вычислений за границы допустимого диапазона называется переполнением. Переполнение при вычислениях с фиксированной точкой не вызывает прерывания работы процессора. Машина продолжает считать, но результаты могут оказаться неправильными.

Вещественные числа. Числовые величины, которые могут принимать любые значения (целые и дробные) называются вещественными числами. В математике также используется термин «действительные числа». Решение большинства математических задач сводится к вычислениям с веществен-ными числами. Как же такие числа представляются в памяти компьютера?

Вещественные числа в памяти компьютера представляются в форме с плавающей точкой.

Форма с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления р в некоторой целой степени n, которую называют порядком:

Например, число 25,324 можно записать в таком виде: 0.25324х102. Здесь m=0.25324 - мантисса, n=2 - порядок. Порядок указывает, на какое количество позиций и в каком направлении должна «переплыть», т.е. сместиться десятичная точка в мантиссе. Отсюда название «плавающая точка».

Однако справедливы и следующие равенства:

25,324 = 2,5324*101 = 0,0025324*104 = 2532,4*102 и т.п.

Получается, что представление числа в форме с плавающей точкой неоднозначно? Чтобы не было неоднозначности, в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в нормализован-ном представлении должна удовлетворять условию:

0,1 p <= m < 1 p .

Иначе говоря, мантисса меньше единицы и первая значащая цифра - не ноль. Значит для рассмотренного числа нормализованным представлением будет: 0.25324 * 102. В разных типах ЭВМ применяются различные варианты представления чисел в форме с плавающей точкой. Для примера рассмотрим один из возможных. Пусть в памяти компьютера вещественное число представляется в форме с плавающей точкой в двоичной системе счисления (р=2) и занимает ячейку размером 4 байта. В ячейке должна содержаться следующая информация о числе: знак числа, порядок и значащие цифры мантиссы. Вот как эта информация располагается в ячейке:

1-й байт 2-й байт 3-й байт 4-й байт

В старшем бите 1-го байта хранится знак числа. В этом разряде 0 обозначает плюс, 1 - минус. Оставшиеся 7 бит первого байта содержат машинный порядок. В следующих трех байтах хранятся значащие цифры мантиссы.

Что такое машинный порядок? В семи двоичных разрядах помещаются двоичные числа в диапазоне от 0000000 до 1111111. В десятичной системе это соответствует диапазону от 0 до 127. Всего 128 значений. Знак порядка в ячейке не хранится. Но порядок, очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительными и отрицательными значениями порядка. В таком случае между машинным порядком и истинным (назовем его математическим) устанавливается следующее соответствие:

Машинный порядок ... ...
Математический порядок -64 -63 -62 -61 ... ...

Если обозначить машинный порядок Мр, а математический - р, то связь между ними ыразится такой формулой:

Итак, машинный порядок смещен относительно математического на 64 единицы и имеет только положительные значения. При выполнении вычислений с плавающей точкой процессор это смещение учитывает.

Полученная формула записана в десятичной системе. Поскольку 6410=4016 (проверьте!), то в шестнадцатеричной системе формула примет вид:

Мр 16 = р 16 + 40 16

И, наконец, в двоичной системе:

Мр 2 = р 2 +100 0000 2

Теперь мы можем записать внутреннее представление числа 25,324 в форме с плавающей точкой.

  1. Переведем его в двоичную систему счисления с 24 значащими цифрами.

25,324 10 = 11001,0101001011110001101 2

  1. Запишем в форме нормализованного двоичного числа с плавающей точкой:

0,110010101001011110001101*10 101

Здесь мантисса, основание системы счисления (2 10 =10 2) и порядок (5 10 =101 2)записаны в двоичной системе.

  1. Вычислим машинный порядок.

Мр 2 = 101 + 100 0000 = 100 0101

  1. Запишем представление числа в ячейке памяти.

Для того, чтобы получить внутреннее представление отрицательного числа -25,324,достаточно в полученном выше коде заменить в разряде знака числа 0 на 1.

А в шестнадцатеричной форме:

C5 CA 8D

Никакого инвертирования, как для отрицательных чисел с фиксированной точкой, здесь не происходит.

Рассмотрим, наконец, вопрос о диапазоне чисел, представимых в форме с плавающей точкой. Очевидно, положительные и отрицательные числа расположены симметрично относительно нуля. Следовательно, максимальное и минимальное числа равны между собой по модулю: Rmax = |Rmin|. Наименьшее по абсолютной величине число равно нулю. Чему же равно Rmax? Это число с самой большой мантиссой и самым большим порядком:

0,111111111111111111111111*10 2 1111111

Если перевести в десятичную систему, то получится

Rmax = (1 - 2 -24) * 2 64 = 10 19

Очевидно, что диапазон вещественных чисел значительно шире диапазона целых чисел. Если в результате вычислений получается число по модулю большее, чем Rmax, то происходит прерывание работы процессора. Такая ситуация называется переполнением при вычислениях с плавающей точкой. Наименьшее по модулю ненулевое значение равно:

(1/2) * 2 -64 =2 -66 .

Любые значения, меньшие данного по абсолютной величине, воспринимаются процессором как нулевые.

Как известно из математики, множество действительных чисел бесконечно и непрерывно. Множество же вещественных чисел, представимых в памяти ЭВМ в форме с плавающей точкой, является ограниченным и дискретным. Каждое следующее значение получается прибавлением к мантиссе предыдущего единицы в последнем (24-м) разряде. Количество вещественных чисел, точно представимых в па-мяти машины, вычисляется по формуле:

N = 2 t * (U - L+ 1) + 1.

Здесь t - количество двоичных разрядов мантиссы; U - максимальное значение математического порядка; L - минимальное значение порядка. Для рассмотренного нами варианта (t = 24, U = 63, L = -64) получается:

N = 2 146 683 548.

Все же остальные числа, не попадающие в это множество, но находящиеся в диапазоне допустимых значений, представляются в памяти приближенно (мантисса обрезается на 24-м разряде). А поскольку числа имеют погрешности, то и результаты вычислений с этими числами также будут содержать погрешность. Из сказанного следует вывод: вычисления с вещественными числами в компьютере выполняются приближенно.