Рассчитайте матрицу парных коэффициентов корреляции. Матрица парных коэффициентов корреляций

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Мозамбик

……………………………………………………………………………………..

Швейцария

Принятые в таблице обозначения:

· Y -- средняя ожидаемая продолжительность жизни при рождении, лет;

· X 1 -- ВВП в паритетах покупательной способности;

· X 2 -- цепные темпы прироста населения, %;

· X 3 -- цепные темпы прироста рабочей силы, %;

· Х 4 -- коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 -- 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .

6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1. С помощью надстройки «Анализ данных… Корреляция» строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис» «Анализ данных…» «Корреляция»). На рис. 1 изображена панель корреляционного анализа с заполненными полямиДля копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen (на некоторых клавиатурах -- Alt+PrtSc).. Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1.

рис. 1. Панель корреляционного анализа

Таблица 1

Матрица парных коэффициентов корреляции

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2 -Х 3 (выделен жирным шрифтом). Факторы Х 2 -Х 3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х2-Х3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х2 имеет больший по модулю коэффициент корреляции с результатом Y, чем фактор Х3: ry,x2=0,72516; ry,x3=0,53397; |ry,x2|>|ry,x3| (см. табл. 1). Это свидетельствует о более сильном влиянии фактора Х2 на изменение Y. Фактор Х3, таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y , X 1 , X 2 , X 4) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» «Анализ данных… » «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» в табл. 2 ):

y = 75.44 + 0.0447 ? x 1 - 0.0453 ? x 2 - 0.24 ? x 4

Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571?10 -45 (см. «Значимость F» в табл. 2 ), что существенно ниже принятого уровня значимости =0,05.

Вероятность случайного формирования коэффициентов при факторе Х 1 ниже принятого уровня значимости =0,05 (см. «P-Значение» в табл. 2 ), что свидетельствует о статистической значимости коэффициентов и существенном влиянии этих факторов на изменение годовой прибыли Y .

Вероятность случайного формирования коэффициентов при факторах Х 2 и Х 4 превышает принятый уровень значимости =0,05 (см. «P-Значение» в табл. 2 ), и эти коэффициенты не признаются статистически значимыми.

рис. 2. Панель регрессионного анализа модели Y (X 1 ,X 2 ,X 4 )

Таблица 2

Y (X 1 , X 2 , X 4 )

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

3. По результатам проверки статистической значимости коэффициентов уравнения регрессии, проведенной в предыдущем пункте, строим новую регрессионную модель, содержащую только информативные факторы, к которым относятся:

· факторы, коэффициенты при которых статистически значимы;

· факторы, у коэффициентов которых t _статистика превышает по модулю единицу (другими словами, абсолютная величина коэффициента больше его стандартной ошибки).

К первой группе относится фактор Х 1 ко второй -- фактор X 4 . Фактор X 2 исключается из рассмотрения как неинформативный, и окончательно регрессионная модель будет содержать факторы X 1 , X 4 .

Для построения уравнения регрессии скопируем на чистый рабочий лист значения используемых переменных (прил. 5) и проведем регрессионный анализ (рис. 3 ). Его результаты приведены в прил. 6 и перенесены в табл. 3 . Уравнение регрессии имеет вид:

y = 75.38278 + 0.044918 ? x 1 - 0.24031 ? x 4

(см. «Коэффициенты» в табл.3 ).

рис. 3. Панель регрессионного анализа модели Y (X 1 , X 4 )

Таблица 3

Результаты регрессионного анализа модели Y (X 1 , X 4 )

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

Уравнение регрессии статистически значимо: вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «Значимость F» в табл.3 ).

Статистически значимым признается и коэффициент при факторе Х 1 вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «P-Значение» в табл. 3 ). Это свидетельствует о существенном влиянии ВВП в паритетах покупательной способности X 1 на изменение годовой прибыли Y .

Коэффициент при факторе Х 4 (годовой коэффициент младенческой смертности) не является статистически значимым. Однако этот фактор все же можно считать информативным, так как t _статистика его коэффициента превышает по модулю единицу, хотя к дальнейшим выводам относительно фактора Х 4 следует относиться с некоторой долей осторожности.

4. Оценим качество и точность последнего уравнения регрессии, используя некоторые статистические характеристики, полученные в ходе регрессионного анализа (см. «Регрессионную статистику» в табл. 3):

· множественный коэффициент детерминации

R 2 = _ i=1 ____________ =0.946576

R 2 = показывает, что регрессионная модель объясняет 94,7 % вариации средней ожидаемой продолжительности жизни при рождении Y , причем эта вариация обусловлена изменением включенных в модель регрессии факторов X 1 , X 4 ;

· стандартная ошибка регрессии

показывает, что предсказанные уравнением регрессии значения средней ожидаемой продолжительности жизни при рождении Y отличаются от фактических значений в среднем на 2,252208 лет.

Средняя относительная ошибка аппроксимации определяется по приближенной формуле:

E отн?0,8 ? -- ? 100%=0.8 ? 2.252208/66.9 ? 100%?2.7

где тыс. руб. -- среднее значение продолжительности жизни (определено с помощью встроенной функции «СРЗНАЧ »; прил. 1 ).

Е отн показывает, что предсказанные уравнением регрессии значения годовой прибыли Y отличаются от фактических значений в среднем на 2,7 %. Модель имеет высокую точность (при -- точность модели высокая, при -- хорошая, при -- удовлетворительная, при -- неудовлетворительная).

5. Для экономической интерпретации коэффициентов уравнения регрессии сведем в таблицу средние значения и стандартные отклонения переменных в исходных данных (табл. 4). Средние значения были определены с помощью встроенной функции «СРЗНАЧ», стандартные отклонения -- с помощью встроенной функции «СТАНДОТКЛОН» (см. прил. 1).

Множественная регрессия не является результатом преобразования уравнения:

-
;

-
.

Линеаризация подразумевает процедуру …

- приведения уравнения множественной регрессии к парной;

+ приведения нелинейного уравнения к линейному виду;

- приведения линейного уравнения к нелинейному виду;

- приведения нелинейного уравнения относительно параметров к уравнению, линейному относительно результата.

Остатки не изменяются;

Уменьшается количество наблюдений

В стандартизованном уравнении множественной регрессии переменными являются:

Исходные переменные;

Стандартизованные параметры;

Средние значения исходных переменных;

Стандартизованные переменные.

Одним из методов присвоения числовых значений фиктивным переменным является. . .

+– ранжирование;

Выравнивание числовых значений по возрастанию;

Выравнивание числовых значений по убыванию;

Нахождение среднего значения.

В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между. . . .

Переменными;

Параметрами;

Параметрами и переменными;

Переменными и случайными факторами.

Метод оценки параметров моделей с гетероскедастичными остатками называется ____________ методом наименьших квадратов:

Обычным;

Косвенным;

Обобщенным;

Минимальным.

Дано уравнение регрессии . Определите спецификацию модели.

Полиномиальное уравнение парной регрессии;

Линейное уравнение простой регрессии;

Полиномиальное уравнение множественной регрессии;

Линейное уравнение множественной регрессии.

В стандартизованном уравнении свободный член ….

Равен 1;

Равен коэффициенту множественной детерминации;

Равен коэффициенту множественной корреляции;

Отсутствует.

В качестве фиктивных переменных в модель множественной регрессии включаются факторы,

Имеющие вероятностные значения;

Имеющие количественные значения;

Не имеющие качественных значений;

Не имеющие количественных значений.

Факторы эконометрической модели являются коллинеарными, если коэффициент …

Корреляции между ними по модулю больше 0,7;

Детерминации между ними по модулю больше 0,7;

Детерминации между ними по модулю меньше 0,7;

Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК …

Преобразуются исходные уровни переменных;

Остатки не изменяются;

Остатки приравниваются к нулю;

Уменьшается количество наблюдений.

Объем выборки определяется …

Числовыми значением переменных, отбираемых в выборку;

Объемом генеральной совокупности;

Числом параметров при независимых переменных;

Числом результативных переменных.

11. Множественная регрессия не является результатом преобразования уравнения:

+-
;

-
;

-
.

Исходные значения фиктивных переменных предполагают значения …

Качественные;

Количественно измеримые;

Одинаковые;

Значения.

Обобщенный метод наименьших квадратов подразумевает …

Преобразование переменных;

Переход от множественной регрессии к парной;

Линеаризацию уравнения регрессии;

Двухэтапное применение метода наименьших квадратов.

Линейное уравнение множественной регрессии имеет вид . Определите какой из факторовили:

+- , так как 3,7>2,5;

Оказывают одинаковое влияние;

- , так как 2,5>-3,7;

По этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой.

Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является …

Нулевым;

Незначимым;

Существенным;

Несущественным.

Что преобразуется при применении обобщенного метода наименьших квадратов?

Стандартизованные коэффициенты регрессии;

Дисперсия результативного признака;

Исходные уровни переменных;

Дисперсия факторного признака.

Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника.

Возраст;

Уровень образования;

Заработная плата.

Переход от точечного оценивания к интервальному возможен, если оценки являются:

Эффективными и несостоятельными;

Неэффективными и состоятельными;

Эффективными и несмещенными;

Состоятельными и смещенными.

Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

Параметров;

Случайных факторов;

Существенных факторов;

Результатов.

На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой:

Взвешенную регрессию, в которой переменные взяты с весами
;

;

Нелинейную регрессию, в которой переменные взяты с весами
;

Взвешенную регрессию, в которой переменные взяты с весами .

Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения …

Отвергается;

Незначима;

Принимается;

Несущественна.

Если факторы входят в модель как произведение, то модель называется:

Суммарной;

Производной;

Аддитивной;

Мультипликативной.

Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется:

Множественным;

Существенным;

Частным;

Несущественным.

Относительно количества факторов, включенных в уравнение регрессии, различают …

Линейную и нелинейную регрессии;

Непосредственную и косвенную регрессии;

Простую и множественную регрессию;

Множественную и многофакторную регрессию.

Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:

Равенство нулю значений факторного признака4

Нелинейность параметров;

Равенство нулю средних значений результативной переменной;

Линейность параметров.

Метод наименьших квадратов не применим для …

Линейных уравнений парной регрессии;

Полиномиальных уравнений множественной регрессии;

Уравнений, нелинейных по оцениваемым параметрам;

Линейных уравнений множественной регрессии.

При включении фиктивных переменных в модель им присваиваются …

Нулевые значения;

Числовые метки;

Одинаковые значения;

Качественные метки.

Если между экономическими показателями существует нелинейная связь, то …

Нецелесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию линейного уравнение парной регрессии;

Необходимо включить в модель другие факторы и использовать линейное уравнение множественной регрессии.

Результатом линеаризации полиномиальных уравнений является …

Нелинейные уравнения парной регрессии;

Линейные уравнения парной регрессии;

Нелинейные уравнения множественной регрессии;

Линейные уравнения множественной регрессии.

В стандартизованном уравнении множественной регрессии
0,3;
-2,1. Определите, какой из факторовилиоказывает более сильное влияние на:

+- , так как 2,1>0,3;

По этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии;

- , так как 0,3>-2,1;

По этому уравнению нельзя ответить на поставленный вопрос, так как стандартизированные коэффициенты несравнимы между собой.

Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

Аномальными;

Множественными;

Парными;

Фиктивными.

Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода:

Средних квадратов;

Наибольших квадратов;

Нормальных квадратов;

Наименьших квадратов.

Основным требованием к факторам, включаемым в модель множественной регрессии, является:

Отсутствие взаимосвязи между результатом и фактором;

Отсутствие взаимосвязи между факторами;

Отсутствие линейной взаимосвязи между факторами;

Наличие тесной взаимосвязи между факторами.

Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

Качественного характера;

Количественного характера;

Несущественного характера;

Случайного характера.

Из пары коллинеарных факторов в эконометрическую модель включается тот фактор,

Который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами;

Который при отсутствии связи с результатом имеет максимальную связь с другими факторами;

Который при отсутствии связи с результатом имеет наименьшую связь с другими факторами;

Который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами.

Гетероскедастичность подразумевает …

Постоянство дисперсии остатков независимо от значения фактора;

Зависимость математического ожидания остатков от значения фактора;

Зависимость дисперсии остатков от значения фактора;

Независимость математического ожидания остатков от значения фактора.

Величина остаточной дисперсии при включении существенного фактора в модель:

Не изменится;

Будет увеличиваться;

Будет равно нулю;

Будет уменьшаться.

Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение …

Регрессии;

Детерминации;

Корреляции;

Аппроксимации.

Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент …

Корреляции;

Эластичности;

Регрессии;

Детерминации.

Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________потребителя.

Семейное положение;

Уровень образования;

Для существенного параметра расчетное значение критерия Стьюдента …

Больше табличного значения критерия;

Равно нулю;

Не больше табличного значения критерия Стьюдента;

Меньше табличного значения критерия.

Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

Методом скользящего среднего;

Методом определителей;

Методом первых разностей;

Симплекс-методом.

Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов, называется ____________коэффициентом регрессии

Стандартизованным;

Нормализованным;

Выровненным;

Центрированным.

Мультиколлинеарность факторов эконометрической модели подразумевает …

Наличие нелинейной зависимости между двумя факторами;

Наличие линейной зависимости между более чем двумя факторами;

Отсутствие зависимости между факторами;

Наличие линейной зависимости между двумя факторами.

Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками.

Автокоррелированными и гетероскедастичными;

Гомоскедастичными;

Гетероскедастичными;

Автокоррелированными.

Методом присвоения числовых значений фиктивным переменным не является:

Ранжирование;

Присвоение цифровых меток;

Нахождения среднего значения;

Присвоение количественных значений.

Нормально распределенных остатков;

Гомоскедастичных остатков;

Автокорреляции остатков;

Автокорреляции результативного признака.

Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

Общей дисперсии до и после включения фактора в модель;

Остаточной дисперсии до и после включения случайных факторов в модель;

Дисперсии до и после включения результата в модель;

Остаточной дисперсии до и после включения фактора модель.

Обобщенный метод наименьших квадратов используется для корректировки …

Параметров нелинейного уравнения регрессии;

Точности определения коэффициента множественной корреляции;

Автокорреляции между независимыми переменными;

Гетероскедастичности остатков в уравнении регрессии.

После применения обобщенного метода наименьших квадратов удается избежать_________ остатков

Гетероскедастичности;

Нормального распределения;

Равенства нулю суммы;

Случайного характера.

Фиктивные переменные включаются в уравнения ____________регрессии

Случайной;

Парной;

Косвенной;

Множественной.

Взаимодействие факторов эконометрической модели означает, что …

Влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора;

Влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов;

Факторы дублируют влияние друг друга на результат;

Влияние одного из факторов на результирующий признак не зависит от значений другого фактора.

Тема Множественная регрессия (Задачи)

Уравнение регрессии, построенное по 15 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для

с вероятностью 0,99 равны:

Уравнение регрессии, построенное по 20 наблюдениям, имеет вид:

с вероятностью 0,9 равны:

Уравнение регрессии, построенное по 16 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,99 равны:

Уравнение регрессии в стандартизированном виде имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

По 18 наблюдениям получены следующие данные:

;
;
;
;

равны:

По 17 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 22 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 25 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 24 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 28 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 26 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

В уравнении регрессии:

Восстановить пропущенные характеристики; построить доверительный интервал для с вероятностью 0,95, еслиn=12

Задание 2

1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

Условия задачи (Вариант 21)

По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

X 1 – численность промышленно-производственного персонала, чел.

X 2 – среднегодовая стоимость основных фондов, млн. руб.

X 3 – износ основных фондов, %

X 4 – электровооруженность, кВт×ч.

X 5 – техническая вооруженность одного рабочего, млн. руб.

X 6 – выработка товарной продукции на одного работающего, руб.

Таблица 1. Данные выпуска продукции

Y X 1 X 2 X 3 X 4 X 5 X 6
39,5 4,9 3,2
46,4 60,5 20,4
43,7 24,9 9,5
35,7 50,4 34,7
41,8 5,1 17,9
49,8 35,9 12,1
44,1 48,1 18,9
48,1 69,5 12,2
47,6 31,9 8,1
58,6 139,4 29,7
70,4 16,9 5,3
37,5 17,8 5,6
62,0 27,6 12,3
34,4 13,9 3,2
35,4 37,3 19,0
40,8 55,3 19,3
48,1 35,1 12,4


Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

В таблице 2 представлена матрица коэффициентов парной корреляции для всех переменных, участвующих в рассмотрении. Матрица получена с помощью инструмента Корреляция из пакета Анализ данных в Excel.

Таблица 2. Матрица коэффициентов парной корреляции

Y X1 X2 X3 X4 X5 X6
Y
X1 0,995634
X2 0,996949 0,994947
X3 -0,25446 -0,27074 -0,26264
X4 0,12291 0,07251 0,107572 0,248622
X5 0,222946 0,166919 0,219914 -0,07573 0,671386
X6 0,067685 -0,00273 0,041955 -0,28755 0,366382 0,600899

Визуальный анализ матрицы позволяет установить:

1) У имеет довольно высокие парные корреляции с переменными Х1, Х2 (>0,5) и низкие с переменными Х3,Х4,Х5,Х6 (<0,5);

2) Переменные анализа Х1, Х2 демонстрируют довольно высокие парные корреляции, что обуславливает необходимость проверки факторов на наличие между ними мультиколлинеарности. Тем более, что одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных.

Для выявления мультиколлинеарности факторов выполним тест Фаррара-Глоубера по факторам Х1,Х2,Х3,Х4,Х5,Х6 .

Проверка теста Фаррара-Глоубера на мультиколлинеарность факторов включает несколько этапов.

1) Проверка наличия мультиколлинеарности всего массива переменных .

Одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных. Для выявления мультиколлинеарности между факторами вычисляется матрица межфакторных корреляций R с помощью Пакета анализа данных (таблица 3).

Таблица 3.Матрица межфакторных корреляций R

X1 X2 X3 X4 X5 X6
X1 0,994947 -0,27074 0,07251 0,166919 -0,00273
X2 0,994947 -0,26264 0,107572 0,219914 0,041955
X3 -0,27074 -0,26264 0,248622 -0,07573 -0,28755
X4 0,07251 0,107572 0,248622 0,671386 0,366382
X5 0,166919 0,219914 -0,07573 0,671386 0,600899
X6 -0,00273 0,041955 -0,28755 0,366382 0,600899

Между факторами Х1 и Х2, Х5 и Х4, Х6 и Х5 наблюдается сильная зависимость (>0,5).

Определитель det (R) = 0,001488 вычисляется с помощью функции МОПРЕД. Определитель матрицы R стремится к нулю, что позволяет сделать предположение об общей мультиколлинеарности факторов.

2) Проверка наличия мультиколлинеарности каждой переменной с другими переменными:

· Вычислим обратную матрицу R -1 с помощью функции Excel МОБР (таблица 4):

Таблица 4. Обратная матрица R -1

X1 X2 X3 X4 X5 X6
X1 150,1209 -149,95 3,415228 -1,70527 6,775768 4,236465
X2 -149,95 150,9583 -3,00988 1,591549 -7,10952 -3,91954
X3 3,415228 -3,00988 1,541199 -0,76909 0,325241 0,665121
X4 -1,70527 1,591549 -0,76909 2,218969 -1,4854 -0,213
X5 6,775768 -7,10952 0,325241 -1,4854 2,943718 -0,81434
X6 4,236465 -3,91954 0,665121 -0,213 -0,81434 1,934647

· Вычисление F-критериев , где – диагональные элементы матрицы , n=17, k = 6 (таблица 5).

Таблица 5. Значения F-критериев

F1 (Х1) F2 (Х2) F3 (Х3) F4 (Х4) F5 (Х5) F6 (Х6)
89,29396 89,79536 0,324071 0,729921 1,163903 0,559669

· Фактические значения F-критериев сравниваются с табличным значением F табл = 3,21 (FРАСПОБР(0,05;6;10)) при n1= 6 и n2 = n - k – 1=17-6-1=10 степенях свободы и уровне значимости α=0,05, где k – количество факторов.

· Значения F-критериев для факторов Х1 и Х2 больше табличного, что свидетельствует о наличии мультиколлинеарности между данными факторами. Меньше всего влияет на общую мультиколлинеарность факторов фактор Х3.

3) Проверка наличия мультиколлинеарности каждой пары переменных

· Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы (таблица 6)

Таблица 6. Матрица коэффициентов частных корреляций

X1 X2 X3 X4 X5 X6
X1
X2 0,996086
X3 -0,22453 0,197329
X4 0,093432 -0,08696 0,415882
X5 -0,32232 0,337259 -0,1527 0,581191
X6 -0,24859 0,229354 -0,38519 0,102801 0,341239

· Вычисление t -критериев по формуле (таблица 7)

n - число данных = 17

K - число факторов = 6

Таблица 7.t-критерии для коэффициентов частной корреляции

X1 X2 X3 X4 X5 X6
X1
X2 35,6355
X3 -0,72862 0,636526
X4 0,296756 -0,27604 1,446126
X5 -1,07674 1,13288 -0,4886 2,258495
X6 -0,81158 0,745143 -1,31991 0,326817 1,147999

t табл = СТЬЮДРАСПОБР(0,05;10) = 2,23

Фактические значения t-критериев сравниваются с табличным значением при степенях свободы n-k-1 = 17-6-1=10 и уровне значимости α=0,05;

t21 > tтабл

t54 > tтабл

Из таблиц 6 и 7 видно, что две пары факторов X1 и Х2, Х4 и Х5 имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре Х1 и Х2 оставляем Х2, в паре Х4 и Х5 оставляем Х5.

Таким образом, в результате проверки теста Фаррара-Глоубера остаются факторы: Х2, Х3, Х5, Х6.

Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом Y.

Построим матрицу парных коэффициентов корреляции, исходя из данных таблицы 8.

Таблица 8. Данные выпуска продукции с отобранными факторами Х2, Х3, Х5, Х6.

№ наблю-дения Y X 2 X 3 X 5 X 6
39,5 3,2
46,4 20,4
43,7 9,5
35,7 34,7
41,8 17,9
49,8 12,1
44,1 18,9
48,1 12,2
47,6 8,1
58,6 29,7
70,4 5,3
37,5 5,6
12,3
34,4 3,2
35,4
40,8 19,3
48,1 12,4

В последнем столбце таблицы 9 представлены значения t-критерия для столбца У.

Таблица 9.Матрица коэффициентов частной корреляции с результатом Y

Y X2 X3 X5 X6 t критерий (t табл (0,05;11)= 2,200985
Y 0,996949 -0,25446 0,222946 0,067685
X2 0,996949 -0,26264 0,219914 0,041955 44,31676
X3 -0,25446 -0,26264 -0,07573 -0,28755 0,916144
X5 0,222946 0,219914 -0,07573 0,600899 -0,88721
X6 0,067685 0,041955 -0,28755 0,600899 1,645749

Из таблицы 9 видно, что переменная Y имеет высокую и одновременно статистически значимую частную корреляцию с фактором Х2.

y x (1) x (2) x (3) x (4) x (5)
y 1.00 0.43 0.37 0.40 0.58 0.33
x (1) 0.43 1.00 0.85 0.98 0.11 0.34
x (2) 0.37 0.85 1.00 0.88 0.03 0.46
x (3) 0.40 0.98 0.88 1.00 0.03 0.28
x (4) 0.58 0.11 0.03 0.03 1.00 0.57
x (5) 0.33 0.34 0.46 0.28 0.57 1.00

Анализ матрицы парных коэффициентов корреляции показывает, что результативный показатель наиболее тесно связан с показателем x (4) - количество удобрений, расходуемых на 1 га ().

В то же время связь между признаками-аргументами достаточно тесная. Так, существует практически функциональная связь между числом колесных тракторов (x (1)) и числом орудий поверхностной обработки почвы .

О наличии мультиколлинеарности свидетельствуют также коэффициенты корреляции и . Учитывая тесную взаимосвязь показателей x (1) , x (2) и x (3) , в регрессионную модель урожайности может войти лишь один из них.

Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим регрессионную модель урожайности, включив в нее все исходные показатели:

F набл = 121.

В скобках указаны значения исправленных оценок среднеквадратических отклонений оценок коэффициентов уравнения .

Под уравнением регрессии представлены следующие его параметры адекватности: множественный коэффициент детерминации ; исправленная оценка остаточной дисперсии , средняя относительная ошибка аппроксимации и расчетное значение -критерия F набл = 121.

Уравнение регрессии значимо, т.к. F набл = 121 > F kp = 2,85 найденного по таблице F -распределения при a=0,05; n 1 =6 и n 2 =14.

Из этого следует, что Q¹0, т.е. и хотя бы один из коэффициентов уравнения q j (j = 0, 1, 2, ..., 5) не равен нулю.

Для проверки гипотезы о значимости отдельных коэффициентов регрессии H0: q j =0, где j =1,2,3,4,5, сравнивают критическое значение t kp = 2,14, найденное по таблице t -распределения при уровне значимости a=2Q =0,05 и числе степеней свободы n=14, с расчетным значением . Из уравнения следует, что статистически значимым является коэффициент регрессии только при x (4) , так как ½t 4 ½=2,90 > t kp =2,14.



Не поддаются экономической интерпретации отрицательные знаки коэффициентов регрессии при x (1) и x (5) . Из отрицательных значений коэффициентов следует, что повышение насыщенности сельского хозяйства колесными тракторами (x (1)) и средствами оздоровления растений (x (5)) отрицательно сказывается на урожайности. Таким образом, полученное уравнение регрессии неприемлемо.

Для получения уравнения регрессии со значимыми коэффициентами используем пошаговый алгоритм регрессионного анализа. Первоначально используем пошаговый алгоритм с исключением переменных.

Исключим из модели переменную x (1) , которой соответствует минимальное по абсолютной величине значение ½t 1 ½=0,01. Для оставшихся переменных вновь построим уравнение регрессии:

Полученное уравнение значимо, т.к. F набл = 155 > F kp = 2,90, найденного при уровне значимости a=0,05 и числах степеней свободы n 1 =5 и n 2 =15 по таблице F -распределения, т.е. вектор q¹0. Однако в уравнении значим только коэффициент регрессии при x (4) . Расчетные значения ½t j ½ для остальных коэффициентов меньше t кр = 2,131, найденного по таблице t -распределения при a=2Q =0,05 и n=15.

Исключив из модели переменную x (3) , которой соответствует минимальное значение t 3 =0,35 и получим уравнение регрессии:

(2.9)

В полученном уравнении статистически не значим и экономически не интерпретируем коэффициент при x (5) . Исключив x (5) получим уравнение регрессии:

(2.10)

Мы получили значимое уравнение регрессии со значимыми и интерпретируемыми коэффициентами.

Однако полученное уравнение является не единственно “хорошей” и не “самой лучшей” моделью урожайности в нашем примере.

Покажем, что в условии мультиколлинеарности пошаговый алгоритм с включением переменных является более эффективным. На первом шаге в модель урожайности y входит переменная x (4) , имеющая самый высокий коэффициент корреляции с y , объясняемой переменной -r (y , x (4))=0,58. На втором шаге, включая уравнение наряду с x (4) переменные x (1) или x (3) , мы получим модели, которые по экономическим соображениям и статистическим характеристикам превосходят (2.10):

(2.11)

(2.12)

Включение в уравнение любой из трех оставшихся переменных ухудшает его свойства. Смотри, например, уравнение (2.9).

Таким образом, мы имеем три “хороших” модели урожайности, из которых нужно выбрать по экономическим и статистическим соображениям одну.

По статистическим критериям наиболее адекватна модель (2.11). Ей соответствуют минимальные значения остаточной дисперсии =2,26 и средней относительной ошибки аппроксимации и наибольшие значения и F набл = 273.

Несколько худшие показатели адекватности имеет модель (2.12), а затем - модель (2.10).

Будем теперь выбирать наилучшую из моделей (2.11) и (2.12). Эти модели отличаются друг от друга переменными x (1) и x (3) . Однако в моделях урожайностей переменная x (1) (число колесных тракторов на 100 га) более предпочтительна, чем переменная x (3) (число орудий поверхностной обработки почвы на 100 га), которая является в некоторой степени вторичной (или производной от x (1)).

В этой связи из экономических соображений предпочтение следует отдать модели (2.12). Таким образом, после реализации алгоритма пошагового регрессионного анализа с включением переменных и учета того, что в уравнение должна войти только одна из трех связанных переменных (x (1) , x (2) или x (3)) выбираем окончательное уравнение регрессии:

Уравнение значимо при a=0,05, т.к. F набл = 266 > F kp = 3,20, найденного по таблице F -распределения при a=Q =0,05; n 1 =3 и n 2 =17. Значимы и все коэффициенты регрессии и в уравнении ½t j ½>t kp (a=2Q =0,05; n=17)=2,11. Коэффициент регрессии q 1 следует признать значимым (q 1 ¹0) из экономических соображений, при этом t 1 =2,09 лишь незначительно меньше t kp = 2,11.

Из уравнения регрессии следует, что увеличение на единицу числа тракторов на 100 га пашни (при фиксированном значении x (4)) приводит к росту урожайности зерновых в среднем на 0,345 ц/га.

Приближенный расчет коэффициентов эластичности э 1 »0,068 и э 2 »0,161 показывает, что при увеличении показателей x (1) и x (4) на 1% урожайность зерновых повышается в среднем соответственно на 0,068% и 0,161%.

Множественный коэффициент детерминации свидетельствует о том, что только 46,9% вариации урожайности объясняется вошедшими в модель показателями (x (1) и x (4)), то есть насыщенностью растениеводства тракторами и удобрениями. Остальная часть вариации обусловлена действием неучтенных факторов (x (2) , x (3) , x (5) , погодные условия и др.). Средняя относительная ошибка аппроксимации характеризует адекватность модели, так же как и величина остаточной дисперсии . При интерпретации уравнения регрессии интерес представляют значения относительных ошибок аппроксимации . Напомним, что - модельное значение результативного показателя, характеризует среднее для совокупности рассматриваемых районов значение урожайности при условии, что значения объясняющих переменных x (1) и x (4) зафиксированы на одном и том же уровне, а именно x (1) = x i (1) и x (4) = x i (4) . Тогда по значениям d i можно сопоставлять районы по урожайности. Районы, которым соответствуют значения d i >0, имеют урожайность выше среднего, а d i <0 - ниже среднего.

В нашем примере, по урожайности наиболее эффективно растениеводство ведется в районе, которому соответствует d 7 =28%, где урожайность на 28% выше средней по региону, и наименее эффективно - в районе с d 20 =-27,3%.


Задачи и упражнения

2.1. Из генеральной совокупности (y , x (1) , ..., x (p)), где y имеет нормальный закон распределения с условным математическим ожиданием и дисперсией s 2 , взята случайная выборка объемом n , и пусть (y i , x i (1) , ..., x i (p)) - результат i -го наблюдения (i =1, 2, ..., n ). Определить: а) математическое ожидание МНК-оценки вектора q ; б) ковариационную матрицу МНК-оценки вектора q ; в) математическое ожидание оценки .

2.2. По условию задачи 2.1 найти математическое ожидание суммы квадратов отклонений, обусловленных регрессией, т.е. EQ R , где

.

2.3. По условию задачи 2.1 определить математическое ожидание суммы квадратов отклонений, обусловленных остаточной вариацией относительно линий регрессии, т.е. EQ ост, где

2.4. Доказать, что при выполнении гипотезы Н 0: q=0 статистика

имеет F-распределение с числами степеней свободы n 1 =p+1 и n 2 =n-p-1.

2.5. Доказать, что при выполнении гипотезы Н 0: q j =0 статистика имеет t-распределение с числом степеней свободы n=n-p-1.

2.6. На основании данных (табл.2.3) о зависимости усушки кормового хлеба (y ) от продолжительности хранения (x ) найти точечную оценку условного математического ожидания в предположении, что генеральное уравнение регрессии - линейное.

Таблица 2.3.

Требуется: а) найти оценки и остаточной дисперсии s 2 в предположении, что генеральное уравнение регрессии имеет вид ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезу Н 0: q=0; в) с надежностью g=0,9 определить интервальные оценки параметров q 0 , q 1 ; г) с надежностью g=0,95 определить интервальную оценку условного математического ожидания при х 0 =6; д) определить при g=0,95 доверительный интервал предсказания в точке х =12.

2.7. На основании данных о динамике темпов прироста курса акций за 5 месяцев, приведенных в табл. 2.4.

Таблица 2.4.

месяцы (x )
y (%)

и предположения, что генеральное уравнение регрессии имеет вид , требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,01 значимость коэффициента регрессии, т.е. гипотезы H 0: q 1 =0;

в) с надежностью g=0,95 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,9 установить интервальную оценку условного математического ожидания при x 0 =4; д) определить при g=0,9 доверительный интервал предсказания в точке x =5.

2.8. Результаты исследования динамики привеса молодняка приведены в табл.2.5.

Таблица 2.5.

Предполагая, что генеральное уравнение регрессии - линейное, требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезы H 0: q=0;

в) с надежностью g=0,8 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,98 определить и сравнить интервальные оценки условного математического ожидания при x 0 =3 и x 1 =6;

д) определить при g=0,98 доверительный интервал предсказания в точке x =8.

2.9. Себестоимость (y ) одного экземпляра книги в зависимости от тиража (x ) (тыс.экз.) характеризуется данными, собранными издательством (табл.2.6). Определить МНК-оценки и параметров уравнения регрессии гиперболического вида , с надежностью g=0,9 построить доверительные интервалы для параметров q 0 и q 1 , а также условного математического ожидания при x =10.

Таблица 2.6.

Определить оценки и параметров уравнения регрессии вида , проверить при a=0,05 гипотезу Н 0: q 1 =0 и построить с надежностью g=0,9 доверительные интервалы для параметров q 0 и q 1 и условного математического ожидания при x =20.

2.11. В табл. 2.8 представленные данные о темпах прироста (%) следующих макроэкономических показателей n =10 развитых стран мира за 1992г.: ВНП - x (1) , промышленного производства - x (2) , индекса цен - x (3) .

Таблица 2.8.

Страны x и параметров уравнения регрессии, оценку остаточной дисперсии; б) проверить при a=0,05 значимость коэффициента регрессии, т.е. Н 0: q 1 =0; в) с надежностью g=0,9 найти интервальные оценки q 0 и q 1 ; г) найти при g=0,95 доверительный интервал для в точке х 0 =х i , где i =5; д) сравнить статистические характеристики уравнений регрессий: 1, 2 и 3.

2.12. Задачу 2.11 решить, приняв за объясняемую величину (у ) показатель x (1) , а за объясняющую (х ) переменную x (3) .

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник. М., ЮНИТИ, 1998 (2-е издание 2001);

2. Айвазян С.А., Мхитарян В.С. Прикладная статистика в задачах и упражнениях: Учебник. М. ЮНИТИ – ДАНА, 2001;

3. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М., Финансы и статистика, 1985, 487с.;

4. Айвазян С.А., Бухштабер В. М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерностей. М., Финансы и статисика, 1989, 607с.;

5. Джонстон Дж. Эконометрические методы, М.: Статистика, 1980, 446с.;

6. Дубров А.В., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. М., Финансы и статистика, 2000;

7. Мхитарян В.С., Трошин Л.И. Исследование зависимостей методами корреляции и регрессии. М., МЭСИ, 1995, 120с.;

8. Мхитарян В.С., Дубров А.М., Трошин Л.И. Многомерные статистические методы в экономике. М., МЭСИ, 1995, 149с.;

9. Дубров А.М., Мхитарян В.С., Трошин Л.И. Математическая статистика для бизнесменов и менеджеров. М., МЭСИ, 2000, 140с.;

10. Лукашин Ю.И. Регрессионные и адаптивные методы прогнозирования: Учебное пособие, М., МЭСИ, 1997.

11. Лукашин Ю.И. Адаптивные методы краткосрочного прогнозирования. ‑ М., Статистика, 1979.


ПРИЛОЖЕНИЯ


Приложение 1 . Варианты заданий для самостоятельных компьютерных исследований.

Коллинеарными являются факторы …

Решение:

Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . В нашей модели только коэффициент парной линейной регрессии между факторами и больше 0,7. , значит, факторы и коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и …

мультиколлинеарны

независимы

количественно измеримы

Решение:

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если факторы не коррелированы между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной. Поскольку все недиагональные элементы были бы равны нулю.
, поскольку = = и = = =0.
Если между факторами существует полная линейная зависимость и все коэффициенты парной корреляции равны единице, то определитель такой матрицы равен нулю.


Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются

x (2) и x (3)

x (1) и x (3)

x (1) и x (4)

x (2) и x (4)

Решение:

При построении модели множественной регрессии необходимо исключить возможность существования тесной линейной зависимости между независимыми (объясняющими) переменными, которая ведет к проблеме мультиколлинеарности. При этом осуществляют проверку коэффициентов линейной корреляции для каждой пары независимых (объясняющих) переменных. Эти значения отражены в матрице парных коэффициентов линейной корреляции. Считается, что наличие значений коэффициентов парной корреляции между объясняющими переменными, превышающих по абсолютной величине 0,7, отражает тесную связь между этими переменными (теснота связи с переменной y в данном случае не рассматривается). Такие независимые переменные называются коллинеарными. Если значение коэффициента парной корреляции между объясняющими переменными не превышает по абсолютной величине 0,7, то такие объясняющие переменные не являются коллинеарными. Рассмотрим значения парных коэффициентов межфакторной корреляции: между x (1) и x (2) значение равно 0,45; между x (1) и x (3) – равно 0,82; между x (1) и x (4) – равно 0,94; между x (2) и x (3) – равно 0,3; между x (2) и x (4) – равно 0,7; между x (3) и x (4) – равно 0,12. Таким образом, не превышают 0,7 значения , , . Следовательно, коллинеарными не являются факторы x (1) и x (2) , x (2) и x (3) , x (3) и x (4) . Из последних перечисленных пар в вариантах ответов присутствует пара x (2) и x (3) – это верный вариант ответа. Для остальных пар: x (1 и x (3) , x (1) и x (4) , x (2) и x (4) – значения парных коэффициентов межфакторной корреляции превышают 0,7, и эти факторы являются коллинеарными.

Тема 3: Фиктивные переменные

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

уровень образования

уровень квалификации работника

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Для построения указанной в постановке задания модели используются фиктивные переменные: уровень образования и уровень квалификации работника. Остальные переменные не являются фиктивными, из предложенных вариантов это стаж работы и производительность труда.

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

использовать фиктивную переменную – уровень дохода

исключить из рассмотрения пол потребителя, так как данный фактор нельзя измерить количественным образом

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Они отражают неоднородность исследуемой статистической совокупности и используются для более качественного моделирования зависимостей в таких неоднородных объектах наблюдения. При моделировании отдельных зависимостей по неоднородным данным можно также воспользоваться способом разделения всей совокупности неоднородных данных на несколько отдельных совокупностей, количество которых равно количеству состояний dummy-переменной. Таким образом правильными вариантами ответов являются: «использовать фиктивную переменную – пол потребителя» и «разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола».

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

для типа дома кирпичный

для типа дома монолитный

Решение:

Требуется узнать частное уравнение регрессии для кирпичного и монолитного домов. Для кирпичного дома значения фиктивных переменных следующие , . Уравнение примет вид: или для типа дома кирпичный.
Для монолитного дома значения фиктивных переменных следующие , . Уравнение примет вид
или для типа дома монолитный.