Парадокс Монти Холла: формулировка и объяснение. Парадокс Монти Холла. Самая неточная математика Теория 3 дверей

Парадокс Монти Холла стал все чаще появляться на сайтах букмекерской тематики. Что же это такое и можно ли это использовать игроку в своих интересах?

Что такое парадокс Монти Холла

Парадокс Монти Холла - это задача из теории вероятности. Свою популярность приобрела благодаря американской телепередаче, где игроку предстоит открыть одну из трех дверей. Естественно приз только за одной дверью (машина), за двумя другими коза (шоу как-никак). Сначала игрок выбирает дверь. Она пока не открывается. Осталось две двери. Из этих двух дверей ведущий должен открыть ту, за которой коза. В итоге остается две неоткрытых двери, одна из которых та, что выбрал игрок. За одной коза, за другой автомобиль. Ведущий предлагает поменять игроку свой первоначальный выбор и открыть другую дверь. Что произойдет с шансами игрока выиграть приз, если он поменяет решение, и есть ли смысл это делать?

Если игрок меняет свой выбор, то он выигрывает с вероятностью 66.6%. Если остается при своем первоначальном мнении, шанс увидеть автомобиль ограничится 33.7%. В этом и заключается парадокс. Вроде бы всегда остается две двери, в которых один приз, а значит и вероятность выигрыша (меняй/не меняй) 50%. Но на деле все совсем по-другому. Если бы ведущий сразу открыл дверь с козой, а потом предложил игроку выбрать одну из двух дверей, то шанс действительно был бы 50%. Но сначала игрок делает свой выбор и вероятность выигрыша первоначально выбранной двери составляет 1/3.

При многократном повторении этого выбора его вероятность всегда будет оставаться на уровне 1/3 независимо ни от каких дальнейших действий ведущего либо самого игрока. Соответственно на две оставшиеся двери, всегда будет оставаться вероятность 2/3. А т.к. ведущий из этих двух дверей всегда оставляет одну, то она принимает на себя величину этой вероятности 2/3.

Вот и получается, первоначальный выбор игрока будет вести к выигрышу в трети всех случаев, а смена решения - к двум третям . Потому эта задача и называется парадоксом, что не поддается логике и здравому смыслу. Мозг человека привык работать шаблонно, потому и имеют место оптические обманы, иллюзии, парадоксы. Это не более, чем неосведомленность человека в конкретном вопросе. Даже написанное выше логическое объяснение задачи принимается не каждым, и приходится использовать более доступный метод просветления.

Представим данную задачу немного в другом, более расширенном формате. Дверей не 3, а 10, а условия все те же - игрок выбирает одну дверь, а ведущий открывает все двери и оставляет опять же одну. Ведущий может открыть только двери с козой. Т.е. игрок снова стоит перед выбором - дверь с козой/дверь с автомобилем. Здесь уже условия более понятны для понимания среднестатистическому человеку.

Понятно, что изначально выбрать дверь с призом очень трудно, а точнее вероятность составляет 1/10. И логично, что скорее всего автомобиль будет за оставшейся из 9 дверей. А т.к. ведущий открывает только невыигрышные, то дверь, которая останется не открытой после ведущего и будет предложена игроку, и будет являться дверью с призом. Если и такая формулировка вызвала трудности у человека, то можно условия упрощать еще больше, пока, как говорится, не дойдет. Это не признак большого или малого ума человека, скорее это отличный тест предмет "гуманитарий вы или технарь". Варианты с двумя, десятью, тысячами и т.д. дверями идентичны по своей сути, но различаются по трудности восприятия. Чем меньше дверей, тем легче сбить с толку человека.

Появление парадокса Монти Холла на сайтах, посвященных различным стратегиям, скорее радует, чем огорчает, особенно букмекеров. Правда пока и значение парадоксу Монти Холла придается исключительно прикладное. Это скорее как наглядный пример, что не все, что видишь, так и есть на самом деле. Что в тех же коэффициентах букмекера может быть заложено не только реальное распределение сил на основе статистики и текущих новостей из стана команд. Игроки также могут двигать линию и не основываясь на объективные причины. Тут может иметь место и обычный стадный рефлекс(), и договорняки. Да просто одна большая ставка на неперегруженное событие может сдвинуть линию.

Хотя встречаются и уникумы, утверждающие, что данный парадокс легко можно применить и в ставках на спорт. К сожалению, это утверждения безо всяких доказательств. Представим парадокс Монти Холла в условиях ставок на спорт. Для начала нужно найти событие с равными тремя шансами на успех . Бывают и такие, хоть и редко. Встречается линия на футбол, где на победу одной команды, ничью и другой команды кэфы 2.7 - ровная линия до невозможности. Нам нужно выбрать свой вариант. Затем требуется, чтобы на определенном этапе одно событие отпало, и осталось два, наиболее вероятных. До конца матча нельзя откинуть ни одно событие, пусть даже оно и маловероятно.

На долгом отрезке пути оно обязательно сыграет и даст свой перекос в статистику. Но, даже если представить, что не сыграет, то на этапе, когда останется два варианта, эти варианты уже будут иметь значения, насоразмерные с изначальными. А все потому, что букмекер двигает коэффициенты в течение матча . Грубо говоря, когда придется выбирать из двух дверей, это уже будет не коза и машина, а коза и велосипед. Коза - это ноль, проигрыш - никуда не денется. А автомобиль превратится из кэфа 2.7 в велосипед с гораздо меньшим коэффициентом.

В итоге смена первоначального решения хоть и может дать увеличение процента выигрыша, но сам выигрыш будет иметь уже совсем другую ценность. Т.е. в парадоксе Монти Холла начальные условия не меняются, а в ставках на спорт меняются. Отсюда и его неприменимость в борьбе с букмекерами. А с другой стороны, кто знает? Может и здесь найдется какой-нибудь парадокс, просто его еще никто не видит.

Вывод

Мы продолжаем настоятельно рекомендовать пользоваться . Высокорисковые финансовые стратегии оставьте для казино или тренировочных игровых счетов. Для стабильного заработка на ставках нужна правильная , а не всевозможные вариации КАК сделать ставку, не понимая НА ЧТО .

Встретил её под названием "Парадокс Монти Холла" , и надо же, решил её иначе, а именно: доказал, что это псевдопарадокс .

Друзья, буду рад выслушать критику моему опровержению данного пародокса (псевдопарадокса, если я прав). И тогда я воочию убежусь, что логика моя хромает, перестану мнить себя мыслителем и задумаюсь о смене вида деятельности на более лирический:о). Итак, вот содержание задачи. Предлагаемое решение и моё опровержение ниже.

Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен, поместил за одной из дверей автомобиль, а за двумя другими дверями - по козе. У вас нет никакой информации о том, что за какой дверью находится.

Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2.

Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?
Парадокс Монти Холла - одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен.
Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

Мне кажется, что шансы не изменятся, т.е. никакого парадокса нет.

И вот почему: первый и второй выборы дверей - это независимые события. Всё равно что кидать монетку 2 раза: то, что выпадет во 2-й раз, никак не зависит от того, что выпало в 1-й.

Так и здесь: после открытия двери с козой игрок оказывается в новой ситуации , когда у него 2 двери и вероятность выбора машины или козы 1/2.

Ещё раз: после открытия одной двери из трёх вероятность того, что автомобиль находится за оставшейся дверью, не равна 2/3 , т.к. 2/3 -- это вероятность того, что авто находится за какими-либо 2-мя дверьми. Неверно приписывать эту вероятность неоткрытой дверьи и открытой. До открытия дверей был такой расклад вероятностей, но после открытия одной двери, все эти вероятности становятся ничтожными, т.к. ситуация изменилась, а потому нужен новый подсчёт вероятности , который обычные люди правильно проводят, отвечая, что ничего от перемены выбора не изменится.

Добавление: 1) рассуждение, что:

а) вероятность найти машину за выбранной дверью составляет 1/3,

б) вероятность, что машина за двумя другими невыбранными дверьми, 2/3,

в) т.к. ведущий открыл дверь с козой, то вероятность 2/3 целиком переходит на одну невыбранную (и неоткрытую) дверь,

а потому надо менять выбор на другую дверь, чтобы вероятность с 1/3 стала 2/3, не верно, но ложно, а именно: в пункте "в" , ибо изначально вероятность 2/3 касается любых двух дверей, включая 2 оставшиеся не открытыми, а раз одну дверь открыли, то эта вероятность поделится поровну между 2 не открытыми, т.е. вероятность будет равная, а выбор другой двери её не увеличит.

2) условные вероятности рассчитывают, если есть 2 и более случайных событий, и для каждого события отдельно рассчитывают вероятность, а уже затем высчитывают вероятность совместного наступления 2 и более событий. Тут сначала вероятность угадать была 1/3, но чтобы рассчитать вероятность того, что машина не за той дверью, которая была выбрана, но за другой не открытой, не нужно рассчитывают условную вероятность, а нужно вычислить простую вероятность, которая равна 1 из 2, т.е. 1/2.

3) Таким образом, это не парадокс, а заблуждение! (19.11.2009)

Добавление 2 : Вчера додумался до простейшего объяснения, что стратегия перевыбора всё же является более выигрышной (парадокс верен!): при первом выборе попасть в козу в 2 раза более вероятно, чем в авто, ведь коз две, а потому при втором выборе надо менять выбор. Это же так очевидно:о)

Или иначе: надо не метить в авто, но отбраковать коз, и в этом помогает даже ведущий, открывая козу. А в начале игры с вероятность 2 из 3 это получится и у играющего, так что, отбраковав коз, надо менять выбор. И это тоже очень очевидно вдруг стало:о)

Так что всё, что я писал до сих пор, было псевдоопровержением. Что ж, вот ещё одна иллюстрация к тому, что надо быть скромнее, уважать чужую точку зрения и не доверять уверениям своей логики, что её решения кристалльно логичны .

September 19th, 2013

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

  • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
  • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
  • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
  • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.

Несчастны те люди, кто не умеет программировать хотя бы на уровне формул Excel! Например, им всегда будет казаться, что парадоксы теории вероятностей – это причуды математиков, неспособных понимать реальную жизнь. Между тем, теория вероятностей как раз-таки моделирует реальные процессы, в то время как человеческая мысль часто не может в полном объеме осознать происходящее.

Возьмем парадокс Монти Холла, приведу здесь его формулировку из русской Википедии:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

(при этом участнику игры заранее известны следующие правила:
  1. автомобиль равновероятно размещён за любой из 3 дверей;
  2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  3. если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью)

На первый взгляд, шансы не должны измениться (простите, для меня это уже давно не парадокс, и я уже не могу придумать неверного объяснения, почему шансы не изменятся, которое на первый взгляд смотрелось бы логичным).

Обычно рассказчики этого парадокса начинают пускаться в сложные рассуждения или заваливать читателя формулами. Но если вы хоть чуточку умеете программировать, вам это не нужно. Вы можете провести моделирующие эксперименты, и посмотреть, как часто вы выигрываете или проигрываете при той или иной стратегии.

Действительно, что такое вероятность? Когда говорят «при данной стратегии, вероятность выигрыша 1/3» – это означает, что если вы проведете 1000 экспериментов, то примерно в 333 из них вы выиграете. Т.е., по-другому, шансы «1 из 3» – это в буквальном случае один из трех экспериментов. «Вероятность 2/3» – это точно так же буквально в двух случаях из трех.

Так вот, проведем эксперимент Монти Холла. Один эксперимент легко укладывается в одну строчку Excel-таблицы: вот она (файл стоит скачать, чтобы видеть формулы), приведу здесь описание по столбцам:

A. Номер эксперимента (для удобства)

B. Генерируем целое случайное число от 1 до 3. Это будет дверь, за которой спрятан автомобиль

C-E. для наглядности я разместил в этих ячейках «коз» и «автомобили»

F. Теперь мы выбираем случайную дверь (на самом деле можно выбирать все время одну и ту же дверь, т.к. случайности в выборе двери для автомобиля уже достаточно для модели – проверьте!)

G. Ведущий теперь выбирает дверь из двух оставшихся, чтобы открыть ее вам

H. И вот тут самое главное: он не открывает дверь, за которой автомобиль, а в случае, если вы изначально показали на дверь с козой, открывает другую единственно возможную дверь с козой! В этом его подсказка для вас.

I. Ну что ж, теперь посчитаем шансы. Пока не будем менять дверь – т.е. посчитаем случаи, когда столбец B равен столбцу F. Пусть будет “1” – выиграли, и “0” – проиграли. Тогда сумма ячеек (ячейка I1003) – это количество выигрышей. Должно получиться число, близкое к 333 (всего мы делаем 1000 экспериментов). Действительно, нахождение автомобиля за каждой из трех дверей – это равновероятное событие, значит выбирая одну дверь, шанс угадать – один из трех.

J. Маловато будет! Поменяем наш выбор.

K. Аналогично: «1» – выигрыш, «0» – проигрыш. И что же в сумме? А в сумме получается число, равное 1000 минус число из ячейки I1003, т.е. близкое к 667. Вас это удивляет? А разве что-то другое могло получиться? Ведь других закрытых дверей больше нет! Если изначально выбранная дверь дает вам выигрыш в 333 случаях из 1000, то другая дверь должна давать выигрыш во всех оставшихся случаях!


Понимаете теперь меня, почему я тут не вижу парадокса? Если есть две и только две взаимоисключающие стратегии, и одна дает выигрыш c вероятностью p, то другая должна давать выигрыш с вероятностью 1-p, какой же это парадокс?

Если вам понравился этот пост, попробуйте теперь построить аналогичный файл для парадокса мальчиков и девочек в следующей формулировке:

Мистер Смит отец двоих детей. Мы встретили его, прогуливающегося по улице с маленьким мальчиком, которого он с гордостью представил нам, как своего сына. Какова вероятность того, что другой ребёнок мистера Смита тоже мальчик?

С приветом из солнечного Вьетнама! :) Приезжайте к нам работать! :)