Найти точку разрыва функции. Классификация точек разрыва функции

Точка а называется точкой устранимого разрыва функции , если предел функции в этой точке существует, но в точке а функциялибо не определена, либо ее значениене равно пределу в этой точке

    Разрыв первого рода.

Точка а называется точкой разрыва первого рода функции , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы.

    Разрыв второго рода.

Точка а называется точкой разрыва второго рода функции Точка а называется точкой устранимого разрыва функции , если в этой точке функция не имеет по крайней мере одного из односторонних пределов или хотя бы один из односторонних пределов бесконечен.

25. Производная: определение, механический и геометрический смысл. Уравне-ние касательной к кривой.

Определение производной

Пусть функция определена на некотором промежутке Х. Придадим значению аргумента в точке произвольное приращение так, чтобы точка также принадлежала Х. Тогда соответствующее приращение функции составит .

Опр . Производной функции в точкеназывается предел отношения приращения функции в этой точке к приращению аргумента при(если этот предел существует).

Если в некоторой точке предел бесконечен, то говорят, что в этой точке функция имеет бесконечную производную. Если функция имеет производную в каждой точке множества Х, то производнаятакже является функцией от аргумента х, определенной на Х.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Опр. Касательной к графику функции в точке М называется предельное положение секущей МN, когда точка N стремится к точке М по кривой.

Уравнение пучка прямых, проходящих через точку , имеет вид

Угловой коэффициент секущей равен

Тогда угловой коэффициент касательной равен

Отсюда следует наглядный вывод о том, что . В этом и состоитгеометрический смысл производной .

    отсюда, v (t 0) = x’ (t 0) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени : a = v’ (t ).

Уравнение касательной к графику функции в точке имеет вид:

26. Основные правила дифференцирования. Производные основных элементар-ных функций.

Правила дифференцирования.

1. Производная постоянной равна нулю

2. Производная аргумента равна единице.

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций.

    Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго.

Следствие 1. Постоянный множитель можно выносить за знак производной.

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

Производные основных элементар-ных функций.

1. (C)” = 0, где C = const

2. (x a)” = ax a-1 , где a не равно 0

3. (a x)” = a x ln a, где a > 0

4. (e x)” = e x

5. (log a x)” =1/x ln a , где a > 0

6. (ln x)” =1/x

7. (sin x)” = cos x

8. (cos x)” = - sin x

9. (tg x)” =1/cos 2 x

10. (ctg x)” = -1/sin 2 x

11. (arcsin x)” = 1/~1-x 2

12. (arccos x)’ = -1/~1-x 2

13. (arctg x)” =1/1+x 2

14. (arcctg x)” = -1/1+x 2

27. Производная сложной функции. Производные высших порядков.

Устранимый разрыв.

Определение . Точка a называется точкой устранимого разрыва функции y=f(x) , если предел функции f(x) в этой точке существует, но в точке a функция f(x) либо не определена, либо имеет частное значение f(a) , отличное от предела f(x) в этой точке.

Пример . Например, функция

имеет в точке x=0 устранимый разрыв. Действительно, предельное значение этой функции в точке х=0 равно 1. Частное же значение равно 2.

Если функция f(x) имеет в точке a устранимый разрыв, то этот разрыв можно устранить, не изменяя при этом значений функции в точках, отличных от a . Для этого достаточно положить значение функции в точке a равным ее предельному значению в этой точке. Так, в рассмотренном выше примере достаточно положить f(0)=1 и тогда , т.е. функция f(x) станет непрерывной в точке x=0 .

Разрыв первого рода.

Определение . Точка a называется точкой разрыва, первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу правый и левый пределы

Приведем некоторые примеры.

Пример . Функция y=sgn x имеет в точке x=0 разрыв первого рода. Действительно, и, таким образом, эти пределы не равны между собой.

Пример . Функция , определенная всюду, кроме точки x=1 , имеет в точке x=1 разрыв первого рода. В самом деле, .

Разрыв второго рода.

Определение . Точка a называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов бесконечен.

Пример . Функция f(x)=tg x , очевидно, имеет разрыв второго рода в каждой из точек x k =π/2+π k , k=0, ± 1, ± 2,… , ибо в каждой такой точке

Пример . Функция имеет разрыв второго рода в точке x=0 , ибо в этой точке у нее не существует ни правого, ни левого пределов.

Непрерывность функции на отрезке

Определение . Функция, определенная на отрезке и непрерывная в каждой его точке, называется непрерывной на этом отрезке.

При этом под непрерывность в точке a понимается непрерывность справа, а под непрерывностью в точке b - непрерывность слева.

Будем говорить, что функция y=f(x) , определенная на множестве {x} достигает на нем своей верхней (нижней) грани , если существует такая точка x 0 ∈{x} , что f(x 0)=β (f(x 0)=α ).

Теорема [Вейерштрасса] . Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней грани и своей нижней грани.

Теорема [Больцано-Коши] . Если функция y=f(x) непрерывна на отрезке и f(a)=A , f(b)=B , то для любого C , заключенного между A и B , существует такая точка ξ∈ , что f(ξ)=C .

Другими словами, непрерывная на отрезке функция, принимая какие-либо два значения, принимает и любое лежащее между ними значение.

Следствие . Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка, в которой функция обращается в нуль.

Следствие . Пусть функция y=f(x) непрерывна на отрезке и , . Тогда функция f(x) принимает все значения из отрезка и только эти значения.

Таким образом, множество всех значений функции, заданной и непрерывной на некотором отрезке, представляет собой также отрезок.

Непрерывность функции в точке. Функция y = f (x ) называется непре-

рывной в точке x 0 , если:

1) эта функция определена в некоторой окрестности точки x 0 ;

2) существует предел lim f (x ) ;

→ x 0

3) этот предел равен значению функции в точке x 0 , т.е. limf (x )= f (x 0 ) .

x→ x0

Последнее условие равносильно условию lim

y = 0 , гдеx = x − x 0 – при-

x→ 0

ращение аргумента, y = f (x 0 +

x )− f (x 0 ) – приращение функции, соответст-

вующее приращению аргумента

x , т.е. функция

f (x ) непрерывна в точкеx 0

тогда и только тогда, когда в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Односторонняя непрерывность. Функцияy = f (x ) называется непрерыв-

ной слева в точкеx 0 , если она определена на некотором полуинтервале(a ;x 0 ]

и lim f (x )= f (x 0 ) .

x→ x0 − 0

Функция y = f (x ) называется непрерывнойсправа в точкеx 0 , если она оп-

ределена на некотором полуинтервале [ x 0 ;a ) и limf (x )= f (x 0 ) .

x→ x0 + 0

Функция y = f (x )

непрерывна в точке x 0

тогда и только тогда, когда она

непрерывна

lim f (x )= limf (x )= limf (x )= f (x 0 ) .

x→ x0 + 0

x→ x0 − 0

x→ x0

Непрерывность функции на множестве. Функция y = f (x ) называется

непрерывной на множестве X , если она является непрерывной в каждой точкеx этого множества. При этом если функция определена в конце некоторого промежутка числовой оси, то под непрерывностью в этой точке понимается непрерывность справа или слева. В частности, функцияy = f (x ) называетсяне-

прерывной на отрезке [ a; b] , если она

1) непрерывна в каждой точке интервала (a ;b ) ;

2) непрерывна справа в точке a ;

3) непрерывна слева в точке b .

Точки разрыва функции. Точкаx 0 , принадлежащая области определения функцииy = f (x ) , или являющаяся граничной точкой этой области, называется

точкой разрыва данной функции , еслиf (x ) не является непрерывной в этой точке.

Точки разрыва подразделяются на точки разрыва первого и второго рода:

1) Если существуют конечные пределы lim f (x )= f (x 0 − 0) и

x→ x0 − 0

f (x )= f (x 0 + 0) , причем не все три числаf (x 0 − 0) ,f (x 0 + 0) ,

f (x 0 ) равны

x→ x0 + 0

между собой, то x 0

называется точкой разрыва I рода.

В частности, если левый и правый пределы функции в точке x 0

равны меж-

собой, но

не равны значению функции в этой точке:

f (x0 − 0) = f(x0 + 0) = A≠ f(x0 ) , то x 0 называется точкой устранимого разрыва.

В этом случае, положив f (x 0 )= A , можно видоизменить функцию в точкеx 0

так, чтобы она стала непрерывной (доопределить функцию по непрерывности ). Разностьf (x 0 + 0)− f (x 0 − 0) называетсяскачком функции в точке x 0 .

Скачок функции в точке устранимого разрыва равен нулю.

2) Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва II рода . В точках разрыва II рода не существует или бесконечен хотя бы один из односторонних пределовf (x 0 − 0) иf (x 0 + 0) .

Свойства функций, непрерывных в точке.

f (x)

и g (x ) непрерывны в точкеx 0 , то функции

f (x )± g (x ) ,

f (x )g (x ) и

f (x)

(где g (x )≠ 0) также непрерывны в точкеx .

g(x)

2) Если функция u (x ) непрерывна в точкеx 0 , а функцияf (u ) непрерывна

в точке u 0 = u (x 0 ) , то сложная функцияf (u (x )) непрерывна в точкеx 0 .

3) Все основные элементарные функции (c , x a ,a x , loga x , sinx , cosx , tgx , ctgx , secx , cosecx , arcsinx , arccosx , arctgx , arcctgx ) непрерывны в каж-

дой точке своих областей определения.

Из свойств 1)–3) следует, что все элементарные функции (функции, полученные из основных элементарных функций с помощью конечного числа арифметических операций и операции композиции) также непрерывны в каждой точке своих областей определения.

Свойства функций, непрерывных на отрезке.

1) (теорема о промежуточных значениях) Пусть функция f(x) определе-

на и непрерывна на отрезке [ a ;b ] . Тогда для любого числаC , заключенного

между числами f (a ) иf (b ) , (f (a )< C < f (b )) найдется хотя бы одна точкаx 0 [ a ;b ] , такая, чтоf (x 0 )= C .

2) (теорема Больцано – Коши

рывна на отрезке [ a ;b ] и принимает на его концах значения различных знаков.

Тогда найдется хотя бы одна точка x 0 [ a ;b ] , такая, чтоf (x 0 )= 0 .

3) (1-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке [ a ;b ] . Тогда эта функция ограничена на этом отрезке.

4) (2-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке

[ a ;b ] . Тогда эта функция достигает на отрезке[ a ;b ]

наибольшего

наименьшего

значений, т.е.

существуют

x1 , x2 [ a; b] ,

для любой

точки x [ a ;b ]

справедливы

неравенства

f (x 1 )≤ f (x )≤ f (x 2 ) .

Пример 5.17. Пользуясь определением непрерывности, доказать, что функцияy = 3x 2 + 2x − 5 непрерывна в произвольной точкеx 0 числовой оси.

Решение: 1 способ: Пусть x 0 – произвольная точка числовой оси. Вы-

числим сначала предел функции f (x ) приx → x 0 , применяя теоремы о пределе суммы и произведения функций:

lim f (x )= lim(3x 2 + 2x − 5)= 3(limx )2 + 2 limx − 5= 3x 2

− 5.

x→ x0

x→ x0

x→ x0

x→ x0

Затем вычисляем значение функции в точке x :f (x )= 3x 2

− 5 .

Сравнивая полученные результаты, видим,

lim f (x )= f (x 0 ) , что согласно

x→ x0

определению и означает непрерывность рассматриваемой функции в точке x 0 .

2 способ: Пусть

x – приращение аргумента в точкеx 0 . Найдем соот-

ветствующее

приращение

y = f(x0 + x) − f(x0 ) =

3(x + x )2 + 2(x + x )− 5− (3x 2 + 2x − 5)

6 x x+ (x) 2

2x = (6x + 2)x + (x )2 .

Вычислим теперь предел приращения функции, когда приращение аргу-

стремится

y = lim (6x + 2)

x + (x )2 = (6x + 2) lim

x + (limx )2 = 0 .

x→ 0

x→ 0

x→ 0

x→ 0

Таким образом, lim y = 0 , что и означает по определению непрерывность

x→ 0

функции для любого x 0 R .

Пример 5.18. Найти точки разрыва функцииf (x ) и определить их род. В

случае устранимого разрыва доопределить функцию по непрерывности:

1) f (x ) = 1− x 2 приx < 3;

5x приx ≥ 3

2) f (x )= x 2 + 4 x + 3 ;

x + 1

f (x) =

x4 (x− 2)

f (x )= arctg

(x − 5)

Решение: 1) Областью определения данной функции является вся число-

вая ось (−∞ ;+∞ ) . На интервалах(−∞ ;3) ,(3;+∞ ) функция непрерывна. Разрыв возможен лишь в точкеx = 3 , в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции в указанной точке:

f (3− 0)= lim (1− x 2 )= 1− 9= 8;

x →3 −0

f (3+ 0)= lim 5x = 15.

x →3 +0

Мы видим, что левый и правый пределы конечны, поэтому x = 3

разрыва I

f (x ) . Скачок функции в

f (3+ 0)− f (3− 0)= 15− 8= 7 .

f (3)= 5 3= 15= f (3+ 0) , поэтому в точке

x = 3

f (x ) непрерывна справа.

2) Функция непрерывна на всей числовой оси, кроме точки x = − 1, в которой она не определена. Преобразуем выражение дляf (x ) , разложив числитель

дроби на множители:

f (x) =

4 x +3

(x + 1)(x + 3)

X + 3 приx ≠ − 1.

x + 1

x + 1

Найдем односторонние пределы функции в точке x = − 1:

f (x )= lim

f (x )= lim(x + 3)= 2 .

x →−1 −0

x →−1 +0

x →−1

Мы выяснили, что левый и правый пределы функции в исследуемой точке существуют, конечны и равны между собой, поэтому x = − 1 – точка устранимо-

прямую y = x + 3 с «выколотой» точкойM (− 1;2) . Чтобы функция стала непре-

рывной, следует положить f (− 1)= f (− 1− 0)= f (− 1+ 0)= 2 .

Таким образом, доопределив f (x ) по непрерывности в точкеx = − 1, мы получили функциюf * (x )= x + 3 с областью определения(−∞ ;+∞ ) .

3) Данная функция определена и непрерывна для всех x , кроме точек

x = 0 ,x = 2 , в которых знаменатель дроби обращается в ноль.

Рассмотрим точку x = 0:

Поскольку в достаточно малой окрестности нуля функция принимает толь-

ко отрицательные значения, то f (− 0)= lim

= −∞ = f (+0)

Т.е. точка

(x − 2)

x →−0

x = 0 является точкой разрыва II рода функции

f (x ) .

Рассмотрим теперь точку x = 2:

Функция принимает отрицательные значения вблизи слева от рассматри-

ваемой точки и положительные – справа, поэтому

f (2− 0)=

= −∞,

x4 (x− 2)

x →2 −0

f (2+ 0)= lim

= +∞ . Как и в предыдущем случае, в точкеx = 2

(x − 2)

x →2 +0

ция не имеет ни левого, ни правого конечного пределов, т.е. терпит в этой точке разрыв II рода.

x = 5 .

f (5− 0)= lim arctg

π ,f (5+ 0)= lim arctg

x = 5

(x − 5)

(x − 5)

x →5 −0

x →5 +0

ка разрыва

f (5+ 0)− f (5− 0)=

π − (−

π )= π (см. рис. 5.2).

Задачи для самостоятельного решения

5.174. Пользуясь лишь определением, доказать непрерывность функцииf (x ) в

каждой точке x 0 R :

а) f(x) = c= const;

б) f (x )= x ;

в) f (x )= x 3 ;

г) f (x )= 5x 2 − 4x + 1;

д) f (x )= sinx .

5.175. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

является непрерывной на

1 при x < 0

всей числовой оси. Построить график этой функции.

5.176. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

не является непрерывной

0 при x < 0

в точке x = 0 , но непрерывна справа в этой точке. Построить график функцииf (x ) .

рывной в точке x =

Но непрерывна слева в этой точке. Построить график

функции f (x ) .

5.178. Построить графики функций

а) y =

x + 1

б) y= x+

x + 1

x + 1

x + 1

Какие из условий непрерывности в точках разрыва этих функций выполнены, и какие не выполнены?

5.179. Указать точку разрыва функции

sin x

При x ≠ 0

при x = 0

Какие из условий непрерывности в этой точке выполнены, и какие не выполнены?

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример 1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда . Получаем .
Определение. Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример 5. Показать, что функция Дирихле


разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

Нечётные функции

Нечётная степень где - произвольное целое число.

· Синус .

· Тангенс .

Чётные функции

Чётная степень где - произвольное целое число.

· Косинус .

· Абсолютная величина (модуль) .

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

· Говоря более формально, функция называется периодической, если существует такое число T≠0 (период), что на всей области определения функции выполняется равенство .

· Исходя из определения, для периодической функции справедливо также равенство , где - любое целое число.

· Все тригонометрические функции являются периодическими.

3) Нули (корни) функции - точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

· если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

· если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

Аси́мпто́та - прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x ) 0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x ) 0, функция f (x )убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

1.Найти производную функции: f (x ). 2.Найти точки, в которых производная равна нулю: f (x )=0 x 1, x 2 ,... 3.Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1 a ;b , а x 2 a ;b . 4.Найти значения функции в выбранных точках и на концах отрезка:f (x 1), f (x 2),..., f (x a ),f (x b ), 5.Выбор наибольшего и наименьшего значений функции из найденных. Замечание. Если на отрезке [a ; b ] имеются точки разрыва, то необходимо в них вычислить односторонние пределы, а затем их значения учесть в выборе наибольшего и наименьшего значений функции.

7) Нахождение интервалов выпуклости и вогнутости . Это делается с помощью исследования знака второй производной f (x ). Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя f (x ) , мы решаем неравенство f (x ) 0. На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство f (x ) 0, мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).