Линейный коэффициент корреляции. Критерий корреляции пирсона

Коэффициент корреляции - это мера линейной зависимости двух случайных величин в теории вероятностей и статистике. Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором - также и её направление.

Случайная величина в теории вероятности

Коэффициент корреляции - это статистический показатель, показывающий, насколько связаны между собой колебания значений двух других показателей. Например, насколько движение доходности ПИФа связано, перекликается (коррелирует) с движением индекса, выбранного для расчета коэффициента бета для этого ПИФа. Чем ближе значение коэффициента корреляции к 1, тем больше коррелируют ПИФ и индекс, а значит коэффициент бета и, следовательно, коэффициент альфа можно принимать к рассмотрению. Если значение этого коэффициента корреляции меньше 0,75, то указанные показатели бессмысленны.


Круговорот случайных величин

Корреляционный анализ занимается степенью связи между двумя случайными величинами Х и Y.

Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы:
1. Вычисление выборочных коэффициентов корреляции.
2. Составление корреляционной таблицы.
3. Проверка статистической гипотезы значимости связи.

ОПРЕДЕЛЕНИЕ. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и φ(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.

Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.

Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:



где σ X и σ Y выборочные средние квадратические отклонения величин Х и Y, которые вычисляются по формулам:

Следует отметить, что основной смысл выборочного коэффициента линейной корреляции r B состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r: r=r B (9)

Принимая во внимание формулы:

видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:

(10)

где . То же можно сказать о выборочном уравнений линейной регрессии Х на Y:

(11)

Основные свойства выборочного коэффициента линейной корреляции:

1. Коэффициент корреляции двух величин, не связанных линейной корреляционной зависимостью, равен нулю.
2. Коэффициент корреляции двух величин, связанных линейной корреляционной зависимостью, равен 1 в случае возрастающей зависимости и -1 в случае убывающей зависимости.
3. Абсолютная величина коэффициента корреляции двух величин, связанных линейной корреляционной зависимостью, удовлетворяет неравенству 0<|r|<1. При этом коэффициент корреляции положителен, если корреляционная зависимость возрастающая, и отрицателен, если корреляционная зависимость убывающая.
4. Чем ближе |r| к 1, тем теснее прямолинейная корреляция между величинами Y, X.

По своему характеру корреляционная связь может быть прямой и обратной, а по силе – сильной, средней, слабой. Кроме того, связь может отсутствовать или быть полной.

Сила и характер связи между параметрами

Пример 4. Изучалась зависимость между двумя величинами Y и Х. Результаты наблюдений приведены в таблице в виде двумерной выборки объема 11:



X
Y

Требуется:
1) Вычислить выборочный коэффициент корреляции;
2) Оценить характер и силу корреляционной зависимости;
3) Написать уравнение линейной регрессии Y на Х.

Решение. По известным формулам:

Отсюда, по (7) и (8):

Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами Х и Y является по характеру – обратной, по силе – средней.

3) Уравнение линейной регрессии Y на Х:

Пример 5. Изучалась зависимость между качеством Y (%) и количеством Х (шт). Результаты наблюдений приведены в виде корреляционной таблицы:

Y\X n y
90
n x

Требуется вычислить выборочный коэффициент линейной корреляции зависимости Y от Х.

Решение. Для упрощения вычислений перейдем к новым переменным – условным вариантам (u i , v i), воспользовавшись формулами (*) (§3) при h 1 =4, h 2 =5, x 0 =26, y 0 =80. Для удобства перепишем данную таблицу в новых обозначениях:

u\v -2 -1 n v
-2
-1
n u

Имеем при x i =u i и y j =v j:

Таким образом:

Отсюда,

Вывод: Корреляционная зависимость между величинами Х и Y - прямая и сильная.

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.

Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x1, x2,…, xm, формула для определения которого в общем случае имеет вид

где ∆r – определитель корреляционной матрицы; ∆11 – алгебраическое дополнение элемента ryy корреляционной матрицы.

Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Различные экономические явления как на микро-, так и на макроуровне не являются независимыми, а связаны между собой (цена товара и спрос на него, объём производства и прибыль фирмы и.т.д.).

Эта зависимость может быть строго функциональной (детермированной) и статистической.

Зависимость между и называется функциональной, когда каждому значению одного признака соответствует одно единственное значение другого признака. (Примером такой однозначной зависимости может служить зависимость площади круга от радиуса).

В реальной действительности чаще встречается иная связь между явлениями, когда каждому значению одного признака могут соответствовать несколько значений другого (например, связь между возрастом детей и их ростом).

Форма связи, при которой один или несколько взаимосвязанных показателей (факторов) оказывают влияние на другой показатель (результат) не однозначно, а с определенной долей вероятности, называется статистической. В частности, если при изменении одной из величин изменяется среднее значение другой, то в этом случае статистическую зависимость называют корреляционной.

В зависимости от числа факторов, включаемых в модель, различают парную корреляцию (связь двух переменных) и множественную (зависимость результата от нескольких факторов).

Корреляционный анализ состоит в определении направления, формы и степени связи (тесноты) между двумя (несколькими) случайными признаками и.

По направлению корреляция бывает положительной (прямой), если при увеличении значений одной переменной увеличивается значение другой, и отрицательной (обратной), если при увеличении значений одной переменной, уменьшается значение другой.

По форме корреляционная связь может быть линейной (прямолинейной), когда изменение значений одного признака приводит к равномерному изменению другого (математически описывается уравнением прямой), и криволинейной, когда изменение значений одного признака приводит к неодинаковым изменениям другого (математически она описывается уравнениями кривых линий, например гиперболы, параболы и т.д.).

Простейшей формой зависимости между переменными является линейная зависимость. И проверка наличия такой зависимости, оценивание её индикаторов и параметров является одним из важнейших направлений эконометрики.

Существуют специальные статистические методы и, соответственно, показатели, значения которых определённым образом свидетельствуют о наличии или отсутствии линейной связи между переменными.

Коэффициент линейной корреляции

Наиболее простым, приближенным способом выявления корреляционной связи является графический.

При небольшом объеме выборки экспериментальные данные представляют в виде двух рядов связанных между собой значений и. Если каждую пару представить точкой на плоскости, то получится так называемое корреляционное поле (рис.1).

Если корреляционное поле представляет собой эллипс, ось которого расположена слева направо и снизу вверх (рис.1в), то можно полагать, что между признаками существует линейная положительная связь.

Если корреляционное поле вытянуто вдоль оси слева направо и сверху вниз (рис.1г), то можно полагать наличие линейной отрицательной связи.

В случае же если точки наблюдений располагаются на плоскости хаотично, т.е корреляционное поле образует круг (рис.1а), то это свидетельствует об отсутствии связи между признаками.

На рис.1б представлена строгая линейная функциональная связь.

Под теснотой связи между двумя величинами понимают степень сопряженности между ними, которая обнаруживается с изменением изучаемых величин. Если каждому заданному значению соответствуют близкие друг другу значения, то связь считается тесной (сильной); если же значения сильно разбросаны, то связь считается менее тесной. При тесной корреляционной связи корреляционное поле представляет собой более или менее сжатый эллипс.

Количественным критерием направления и тесноты линейной связи является коэффициент линейной корреляции.

Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции. Он вычисляется по формуле:

где, текущие значения признаков и; и средние арифметические значения признаков; - среднее арифметическое произведений вариант, и средние квадратические отклонения этих признаков; объём выборки.


Для вычисления коэффициента корреляции достаточно принять предположение о линейной связи между случайными признаками. Тогда вычисленный коэффициент корреляции и будет мерой этой линейной связи.

Коэффициент линейной корреляции принимает значения от?1 в случае строгой линейной отрицательной связи, до +1 в случае строгой линейной положительной связи (т.е.). Близость коэффициента корреляции к 0 свидетельствует об отсутствии линейной связи между признаками, но не об отсутствии связи между ними вообще.

Коэффициенту корреляции можно дать наглядную графическую интерпретацию.

Если, то между признаками существует линейная функциональная зависимость вида, что означает полную корреляцию признаков. При, прямая имеет положительный наклон по отношению к оси, при отрицательный (рис. 1б).

Если, точки находятся в области ограниченной линией, напоминающей эллипс. Чем ближе коэффициент корреляции к, тем уже эллипс и тем теснее точки сосредоточены вблизи прямой линии. При говорят о положительной корреляции. В этом случае значения имеют тенденцию к возрастанию с увеличением (рис.1в). При говорят об отрицательной корреляции; значения имеют тенденцию к уменьшению с ростом (рис.1г).

Если, то точки располагаются в области, ограниченной окружностью. Это означает, что между случайными признаками и отсутствует корреляция, и такие признаки называются некоррелированными (рис.1а).

Также коэффициент линейной корреляции может быть близок (равен) нулю, когда между признаками есть связь, но она нелинейная (рис.2).

При оценке тесноты связи можно использовать следующую условную таблицу:

Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин и с тоит их показатель ковариации:

Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин и. Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь - отрицательная, равен нулю - линейная связь отсутствует.

В отличие от коэффициента корреляции показатель ковариации нормирован - он имеет размерность, и его величина зависит от единиц измерения и. В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:

Оценка значимости (достоверности) коэффициента корреляции

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции, который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции, который вычисляется как математическое ожидание произведений отклонений СВ и от их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю не следует, что теоретический коэффициент также (т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции. Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при; и при.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е. в генеральной совокупности отсутствует корреляция. Альтернативной является гипотеза.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

Которая имеет распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента определяется критическое значение. Если рассчитанное значение критерия, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью.

Если же, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1. В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

Корреляционный анализ занимается степенью связи между двумя случайными величинами Х и Y.

Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы:
1. Вычисление выборочных коэффициентов корреляции.
2. Составление корреляционной таблицы.
3. Проверка статистической гипотезы значимости связи.

ОПРЕДЕЛЕНИЕ. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и φ(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.

Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.

Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:

где σ X и σ Y выборочные средние квадратические отклонения величин Х и Y, которые вычисляются по формулам:

Следует отметить, что основной смысл выборочного коэффициента линейной корреляции r B состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r: r=r B (9)

Принимая во внимание формулы:

видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:

(10)

где . То же можно сказать о выборочном уравнений линейной регрессии Х на Y:

(11)

Основные свойства выборочного коэффициента линейной корреляции:

1. Коэффициент корреляции двух величин, не связанных линейной корреляционной зависимостью, равен нулю.
2. Коэффициент корреляции двух величин, связанных линейной корреляционной зависимостью, равен 1 в случае возрастающей зависимости и -1 в случае убывающей зависимости.
3. Абсолютная величина коэффициента корреляции двух величин, связанных линейной корреляционной зависимостью, удовлетворяет неравенству 0<|r|<1. При этом коэффициент корреляции положителен, если корреляционная зависимость возрастающая, и отрицателен, если корреляционная зависимость убывающая.
4. Чем ближе |r| к 1, тем теснее прямолинейная корреляция между величинами Y, X.

По своему характеру корреляционная связь может быть прямой и обратной, а по силе – сильной, средней, слабой. Кроме того, связь может отсутствовать или быть полной.

Сила и характер связи между параметрами

Пример 4. Изучалась зависимость между двумя величинами Y и Х. Результаты наблюдений приведены в таблице в виде двумерной выборки объема 11:

X 68 37 50 53 75 66 52 65 74 65 54
Y 114 149 146 141 114 112 124 105 141 120 124

Требуется:
1) Вычислить выборочный коэффициент корреляции;
2) Оценить характер и силу корреляционной зависимости;
3) Написать уравнение линейной регрессии Y на Х.

Решение. По известным формулам:

Отсюда, по (7) и (8):

Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами Х и Y является по характеру – обратной, по силе – средней.

3) Уравнение линейной регрессии Y на Х:

Пример 5. Изучалась зависимость между качеством Y (%) и количеством Х (шт). Результаты наблюдений приведены в виде корреляционной таблицы:

Y\X 18 22 26 30 n y
70 5 5
75 7 46 1 54
80 29 72 101
85 29 8
90 3 3
n x 12 75 102 11 200

Требуется вычислить выборочный коэффициент линейной корреляции зависимости Y от Х.

Решение. Для упрощения вычислений перейдем к новым переменным – условным вариантам (u i , v i), воспользовавшись формулами (*) (§3) при h 1 =4, h 2 =5, x 0 =26, y 0 =80. Для удобства перепишем данную таблицу в новых обозначениях:

u\v -2 -1 0 1 n v
-2 5 5
-1 7 46 1 54
0 29 72 101
1 29 8
2 3 3
n u 12 75 102 11 200

Имеем при x i =u i и y j =v j:

Таким образом:

Отсюда,

Вывод: Корреляционная зависимость между величинами Х и Y - прямая и сильная.

Экономические данные представляют собой количественные характеристики каких-либо экономических объектов или процессов. Они формируются под действием множества факторов, не все из которых доступны внешнему контролю. Неконтролируемые факторы могут принимать случайные значения из некоторого множества значений и тем самым обусловливать случайность данных, которые они определяют. Одной из основных задач в экономических исследованиях является анализ зависимостей между переменными.

Рассматривая зависимости между признаками, необходимо выделить прежде всего два типа связей:

  • функциональные - характеризуются полным соответствием между изменением факторного признака и изменением результативной величины: каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Этот тип связи выражается в виде формульной зависимости. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Так, величина заработной платы при повременной оплате труда зависит от количества отработанных часов;
  • корреляционные - между изменением двух признаков нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем, при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака.

Изучая взаимосвязи между признаками, их классифицируют по направлению, форме, числу факторов:

  • по направлению связи делятся на прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора. При обратной связи направление изменения результативного признака противоположно направлению изменения признака- фактора. Например, чем выше квалификация рабочего, тем выше уровень производительности его труда (прямая связь). Чем выше производительность труда, тем ниже себестоимость единицы продукции (обратная связь);
  • по форме (виду функции) связи делят на линейные (прямолинейные) и нелинейные (криволинейные). Линейная связь отображается прямой линией, нелинейная - кривой (парабол ой, гиперболой и т.п.). При линейной связи с возрастанием значения факторного признака происходит равномерное возрастание (убывание) значения результативного признака;
  • по количеству факторов, действующих на результативный признак, связи подразделяют на однофакторные (парные) и многофакторные.

Изучение зависимости вариации признака от окружающих условий и составляет содержание теории корреляции .

При проведении корреляционного анализа вся совокупность данных рассматривается как множество переменных (факторов), каждая из которых содержит п наблюдений.

При изучении взаимосвязи между двумя факторами их, как правило, обозначают Х= (х р х 2 , ...,х п) и Y= (у { , у 2 , ...,у и).

Ковариация - это статистическая мера взаимодействия двух переменных. Например, положительное значение ковариации доходности двух ценных бумаг показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону.

Ковариация между двумя переменными X и Y рассчитывается следующим образом:

где- фактические значения переменных

X и г;

Если случайные величины Хи Y независимы, теоретическая ковариация равна нулю.

Ковариация зависит от единиц, в которых измеряются переменные Хи У, она является ненормированной величиной. Поэтому для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции.

Для двух переменных X и Y коэффициент парной корреляции

определяется следующим образом:

где SSy - оценки дисперсий величин Хи Y. Эти оценки характеризуют степень разброса значений х { ,х 2 , ...,х п (у 1 ,у 2 ,у п) вокруг своего среднего х (у соответственно), или вариабельность (изменчивость) этих переменных на множестве наблюдений.

Дисперсия (оценка дисперсии) определяется по формуле

В общем случае для получения несмещенной оценки дисперсии сумму квадратов следует делить на число степеней свободы оценки (п-р), где п - объем выборки, р - число наложенных на выборку связей. Так как выборка уже использовалась один раз для определения среднего X, то число наложенных связей в данном случае равно единице (р = 1), а число степеней свободы оценки (т.е. число независимых элементов выборки) равно (п - 1).

Более естественно измерять степень разброса значений переменных в тех же единицах, в которых измеряется и сама переменная. Эту задачу решает показатель, называемый среднеквадратическим отклонением (стандартным отклонением ) или стандартной ошибкой переменной X (переменной Y) и определяемый соотношением

Слагаемые в числителе формулы (3.2.1) выражают взаимодействие двух переменных и определяют знак корреляции (положительная или отрицательная). Если, например, между переменными существует сильная положительная взаимосвязь (увеличение одной переменной при увеличении второй), каждое слагаемое будет положительным числом. Аналогично, если между переменными существует сильная отрицательная взаимосвязь, все слагаемые в числителе будут отрицательными числами, что в результате дает отрицательное значение корреляции.

Знаменатель выражения для коэффициента парной корреляции [см. формулу (3.2.2)] просто нормирует числитель таким образом, что коэффициент корреляции оказывается легко интерпретируемым числом, не имеющим размерности, и принимает значения от -1 до +1.

Числитель выражения для коэффициента корреляции, который трудно интерпретировать из-за необычных единиц измерения, есть ковариация ХиУ. Несмотря на то что иногда она используется как самостоятельная характеристика (например, в теории финансов для описания совместного изменения курсов акций на двух биржах), удобнее пользоваться коэффициентом корреляции. Корреляция и ковариация представляют, по сути, одну и ту же информацию, однако корреляция представляет эту информацию в более удобной форме.

Для качественной оценки коэффициента корреляции применяются различные шкалы, наиболее часто - шкала Чеддока. В зависимости от значения коэффициента корреляции связь может иметь одну из оценок:

  • 0,1-0,3 - слабая;
  • 0,3-0,5 - заметная;
  • 0,5-0,7 - умеренная;
  • 0,7-0,9 - высокая;
  • 0,9-1,0 - весьма высокая.

Оценка степени тесноты связи с помощью коэффициента корреляции проводится, как правило, на основе более или менее ограниченной информации об изучаемом явлении. В связи с этим возникает необходимость оценки существенности линейного коэффициента корреляции, дающая возможность распространить выводы по результатам выборки на генеральную совокупность.

Оценка значимости коэффициента корреляции при малых объемах выборки выполняется с использованием 7-критерия Стьюдента. При этом фактическое (наблюдаемое) значение этого критерия определяется по формуле

Вычисленное по этой формуле значение / набл сравнивается с критическим значением 7-критерия, которое берется из таблицы значений /-критерия Стьюдента (см. Приложение 2) с учетом заданного уровня значимости ос и числа степеней свободы (п - 2).

Если 7 набл > 7 табл, то полученное значение коэффициента корреляции признается значимым (т.е. нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается). И таким образом делается вывод, что между исследуемыми переменными есть тесная статистическая взаимосвязь.

Если значение г у х близко к нулю, связь между переменными слабая. Если корреляция между случайными величинами:

  • положительная, то при возрастании одной случайной величины другая имеет тенденцию в среднем возрастать;
  • отрицательная, то при возрастании одной случайной величины другая имеет тенденцию в среднем убывать. Удобным графическим средством анализа парных данных является диаграмма рассеяния , которая представляет каждое наблюдение в пространстве двух измерений, соответствующих двум факторам. Диаграмму рассеяния, на которой изображается совокупность значений двух признаков, называют еще корреляционным полем. Каждая точка этой диаграммы имеет координаты х (. и у г По мере того как возрастает сила линейной связи, точки на графике будут лежать более близко к прямой линии, а величина г будет ближе к единице.

Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества признаков получают матрицу коэффициентов парной корреляции.

Пусть вся совокупность данных состоит из переменной Y = = (у р у 2 , ..., у п) и т переменных (факторов) X, каждая из которых содержит п наблюдений. Значения переменных Y и X, содержащиеся в наблюдаемой совокупности, записываются в таблицу (табл. 3.2.1).

Таблица 3.2.1

Переменная

Номер

наблюдения

Х тЗ

Х тп

На основании данных, содержащихся в этой таблице, вычисляют матрицу коэффициентов парной корреляции R, она симметрична относительно главной диагонали:


Анализ матрицы коэффициентов парной корреляции используют при построении моделей множественной регрессии.

Одной корреляционной матрицей нельзя полностью описать зависимости между величинами. В связи с этим в многомерном корреляционном анализе рассматривается две задачи:

  • 1. Определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ.
  • 2. Определение тесноты связи между двумя величинами при фиксировании или исключении влияния остальных величин.

Эти задачи решаются соответственно с помощью коэффициентов множественной и частной корреляции.

Решение первой задачи (определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ) осуществляется с помощью выборочного коэффициента множественной корреляции по формуле

где R - R [см. формулу (3.2.6)]; Rjj - алгебраическое дополнение элемента той же матрицы R.

Квадрат коэффициента множественной корреляции Щ j 2 j _j J+l m принято называть выборочным множественным коэффициентом детерминации ; он показывает, какую долю вариации (случайного разброса) исследуемой величины Xj объясняет вариация остальных случайных величин Х { , Х 2 ,..., Х т.

Коэффициенты множественной корреляции и детерминации являются величинами положительными, принимающими значения в интервале от 0 до 1. При приближении коэффициента R 2 к единице можно сделать вывод о тесноте взаимосвязи случайных величин, но не о ее направлении. Коэффициент множественной корреляции может только увеличиваться, если в модель включать дополнительные переменные, и не увеличится, если исключать какие-либо из имеющихся признаков.

Проверка значимости коэффициента детерминации осуществляется путем сравнения расчетного значения /’-критерия Фишера

с табличным F raбл. Табличное значение критерия (см. Приложение 1) определяется заданным уровнем значимости а и степенями свободы v l = mnv 2 = n-m-l. Коэффициент R 2 значимо отличается от нуля, если выполняется неравенство

Если рассматриваемые случайные величины коррелируют друг с другом, то на величине коэффициента парной корреляции частично сказывается влияние других величин. В связи с этим возникает необходимость исследования частной корреляции между величинами при исключении влияния других случайных величин (одной или нескольких).

Выборочный частный коэффициент корреляции определяется по формуле

где R Jk , Rjj, R kk - алгебраические дополнения к соответствующим элементам матрицы R [см. формулу (3.2.6)].

Частный коэффициент корреляции, также как и парный коэффициент корреляции, изменяется от -1 до +1.

Выражение (3.2.9) при условии т = 3 будет иметь вид

Коэффициент г 12(3) называется коэффициентом корреляции между х { и х 2 при фиксированном х у Он симметричен относительно первичных индексов 1, 2. Его вторичный индекс 3 относится к фиксированной переменной.

Пример 3.2.1. Вычисление коэффициентов парной,

множественной и частной корреляции.

В табл. 3.2.2 представлена информация об объемах продаж и затратах на рекламу одной фирмы, а также индекс потребительских расходов за ряд текущих лет.

  • 1. Построить диаграмму рассеяния (корреляционное поле) для переменных «объем продаж» и «индекс потребительских расходов».
  • 2. Определить степень влияния индекса потребительских расходов на объем продаж (вычислить коэффициент парной корреляции).
  • 3. Оценить значимость вычисленного коэффициента парной корреляции.
  • 4. Построить матрицу коэффициентов парной корреляции по трем переменным.
  • 5. Найти оценку множественного коэффициента корреляции.
  • 6. Найти оценки коэффициентов частной корреляции.

1. В нашем примере диаграмма рассеяния имеет вид, приведенный на рис. 3.2.1. Вытянутость облака точек на диаграмме рассеяния вдоль наклонной прямой позволяет сделать предположение, что существует некоторая объективная тенденция прямой линейной связи между значениями переменных Х 2 Y (объем продаж).

Рис. 3.2.1.

2. Промежуточные расчеты при вычислении коэффициента корреляции между переменными Х 2 (индекс потребительских расходов) и Y (объем продаж) приведены в табл. 3.2.3.

Средние значения случайных величин Х 2 и Y, которые являются наиболее простыми показателями, характеризующими последовательности jCj, х 2 , ..., х 16 и y v y 2 , ..., у 16 , рассчитаем по следующим формулам:


Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Таблица 3.2.3

л:, - х

(И - У)(х, - х)

(х, - х) 2

(у,- - у) 2

Дисперсия характеризует степень разброса значений x v x 2 ,х :

Рассмотрим теперь решение примера 3.2.1 в Excel.

Чтобы вычислить корреляцию средствами Excel, можно воспользоваться функцией =коррел (), указав адреса двух столбцов чисел, как показано на рис. 3.2.2. Ответ помещен в D8 и равен 0,816.

Рис. 3.2.2.

(Примечание. Аргументы функции коррел должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент, который является массивом или ссылкой, содержит текст, логические значения или пустые ячейки, то такие значения игнорируются; однако ячейки, которые содержат нулевые значения, учитываются.

Если массив! и массив2 имеют различное количество точек данных, то функция коррел возвращает значение ошибки #н/д.

Если массив1 либо массив2 пуст или если о (стандартное отклонение) их значений равно нулю, то функция коррел возвращает значение ошибки #дел/0 !.)

Критическое значение /-статистики Стьюдента может быть также получено с помощью функции стьюдраспробр 1 пакета Excel. В качестве аргументов функции необходимо задать число степеней свободы, равное п - 2 (в нашем примере 16 - 2= 14) и уровень значимости а (в нашем примере а = 0,1) (рис. 3.2.3). Если фактическое значение /-статистики, взятое по модулю, больше критического, то с вероятностью (1 - а) коэффициент корреляции значимо отличается от нуля.


Рис. 3.2.3. Критическое значение /-статистики равно 1,7613

В Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения различных статистических задач. Для вычисления матрицы коэффициентов парной корреляции R следует воспользоваться инструментом Корреляция (рис. 3.2.4) и установить параметры анализа в соответствующем диалоговом окне. Ответ будет помещен на новый рабочий лист (рис. 3.2.5).

1 В Excel 2010 название функции стьюдраспробр изменено на стью-

ДЕНТ.ОБР.2Х.

Рис. 3.2.4.


Рис. 3.2.5.

  • Основоположниками теории корреляции считаются английские статистики Ф. Гальтон (1822-1911) и К. Пирсон (1857-1936). Термин «корреляция» был заимствован из естествознания и обозначает «соотношение, соответствие». Представление о корреляции как взаимозависимости между случайными переменными величинами лежит воснове математико-статистической теории корреляции.

КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ В

ЭКОНОМИЧЕСКИХ РАСЧЕТАХ

Основные понятия в корреляционном и регрессионном анализе

В математике существуют два понятия, отражающие причинно-следственные связи между признаками: функциональная и корреляционная зависимость.

Под функциональной зависимостью понимается такая связь между величинами, когда значение зависимой величины – функции – полностью определяется значениями зависимых переменных.

Корреляционная зависимость имеет место, когда каждому значекнию одной (результативной) величины соответствует множество случайных значений другой, возникающей с определенной вероятностью.

При изучении экономических явлений мы имеем дело не с функциональной, а с корреляционной зависимостью. С помощью корреляционного и регрессионного анализа можно рассчитать коэффициенты корреляции , которые оценивают силу связи между отдельными показателями, подобрать

уравнение регрессии , которое определяет форму этой связи, и установить достоверность существования этой связи.

Процесс корреляционного и регрессионного анализа экономических процессов состоит из следующих этапов:

Предварительная обработка статистических данных и выбор основных факторных признаков, влияющих на результативный показатель;

Оценка тесноты связи и выявление формы существующей связи между результативным и факторными признаками;

Разработка модели (многофакторной) изучаемого явления и ее анализ;

Применение полученных результатов проведенного анализа для принятия управленческих решений.

Перед корреляцией стоят две основные задачи. Первая заключается в выявлении, как изменяется в среднем результативный признак в связи с изменением факторного. Эта задача решается нахождением уравненимя связи. Вторая задача определяет степень влияния искажающих факторов. Эту задачу решают путем изучения показателей тесноты связи. Такими показателями являются коэффициенты корреляции и корреляционное отношение.



2. Результативный и факторный признаки . При изу­чении влияния одних признаков явлений на другие из цепи признаков, характеризующих данное явление, выделяются два - признака-факторный (влияющий на результат) и результативный. Необходимо установить, какой из признаков является факторным и какой результативным. В этом помогает прежде всего логиче­ский анализ.

Пример . Себестоимость промышленной продукции отдель­ного предприятия зависит от многих факторов, в том числе от объема продукции на данном предприятии. Себестоимость про­дукции выступает в этом случае как результативный признак, а объем продукции - как факториальный.

Другой пример. Чтобы судить о преимуществах круп­ных предприятий перед мелкими, можно рассмотреть, как увеличива­ется производительность труда рабочих крупных предприятий, и выявить зависимость производительности труда от увеличения размеров предприятия.

3. Понятие об уравнение связи. Уравнение этой функции будет уравнением связи между результативным и факториальным признаками.

Уравнение связи находится с помощью способа наименьших квадратов, который требует, чтобы сумма квадратов отклонений эмпирических значений от значений, получаемых на основании уравнения связи, была минимальной.

Применение способа наименьших квадратов позволяет нахо­дить параметры уравнения связи при помощи решения системы так называемых нормальных уравнений, различных для связи каждого вида.

Чтобы отметить, что зависимость между двумя признаками выражается и среднем, значения результативного признака, найденные по уравнению связи, обозначаются Ух.

Зная уравнение связи, можно вычислить заранее среднее значение результативного признака, когда значение. факториального признака известно. Таким образом, уравнение связи яв­ляется методом обобщения наблюдаемых статистических связей, методом их изучения.

Применение той или иной функции в качестве уравнения связи разграничивает связи по их форме: линейную связь и криволинейную связь (параболическую, гиперболическую и др.).

Рассмотрим уравнения связи для зависимостей от одного признака при разных формах связи, (линейной, криволинейной параболической, гиперболической) и для множественной связи.

4. Линейная зависимость между признаками . Уравнение связи как уравнение прямой Ух==ао+а1х применяется в случае равномерного на­растания результативного признака с увеличением признака факториального. Такая зависимость будет зависимостью линей­ной (прямолинейной).

Параметры уравнения прямой линии ао и а1 находятся путем решения системы нормальных уравнений, получаемых по способу наименьших квадратов:

Примером расчета параметров уравнения и средних значе­ний результативного признака Ух может служить следующая таблица, являющаяся результатом группировки по факториальному признаку и подсчета средних по результативному при­знаку.

Группировка предприятий по стоимости основных средств и подсчет сумм необходимы для уравнения связи.

Из таблицы находим: n==6; =18; =39,0; =71,5

132.0. Строим систему двух уравнений с двумя неизвест­ными:

Поделив каждый член в обоих уравнениях на коэффициенты при aо получим:

Вычтем из второго уравнения первое: 0,97а1=0,83; а1==0,86. Подставив значения а1 в первое уравнение aо+3*0,86 =6,5, най­дем ао=6,5-2,58=+3,92.

Уравнение связи примет вид: yx=3,92+0,86х. Подставив в это уравнение соответствующие х, получим значения резуль­тативного признака, отражающие среднюю зависи­мость у от х в виде корреляционной зависимости.

Заметим, что суммы, ис­численные по уравнению и фактические, равны между собой. Изображение факти­ческих и вычисленных зна­чений на рис. 4 показывает, что уравнение связи ото­бражает наблюденную зависимость в среднем.

5. Параболическая зависимость между признаками . Параболическая зависимость, выражаемая уравнением параболы 2-го порядка уx =ао+a1x+a2x 2 , имеет место при ускоренном возрастании или убывании результативного признака в сочетании с равномерным возрастанием факто­риального признака.

Параметры уравнения параболы aо; а1; а2, вычисляются пу­тем решения системы 3 нормальных уравнений:

Возьмем для примера зависимость месячного выпуска про­дукции (у) от величины стоимости основных средств (х). Оба показателя округлены до миллионов рублей. Расчеты необходи­мых сумм приведем в табл. 5.

По данным таблицы составляем систему уравнений:

6. Уравнение гиперболы. Обратная связь указывает на убывание результативного признака при возрастании факториального. Такова линейная связь при отрицательном значении а1. В ряде других случаев обратная связь может быть выражена уравнением гиперболы

Параметры уравнения гиперболы ао и а1 находятся из си­стемы нормальных уравнений:

7. Корреляционная таблица. При большом объеме наблюдений, когда число взаимосвязанных пар велико, парные данные легко могут быть располо­жёны в корреляционной таблице, являющейся наиболее удобной фор­мой представления значительного количества пар чисел.

В корреляционной таблице один признак располагается в строках, а другой - в колонках таблицы. Чис­ло, расположенное в клетке на пе­ресечении графы и колонки, пока­зывает, как часто встречается дан­ное значение результативного при­знака в сочетании с данным значе­нием факториального признака.

Для простоты расчета возьмем небольшое число наблюдений на 20 предприятиях за средней месячной выработкой продукции на одного рабочего (тыс. руб.-у) и за стоимостью основных производст­венных средств (млн. руб.-.х).

В обычной парной таблице эти сведения располагаются так:

Итоги строк у показывают частоту признака nу, итоги граф х - частоту признака nx. Числа, стоящие в клетках корреля­ционной таблицы, являются частотами, относящимися к обоим признакам и обозначаются, nxy.

Корреляционная таблица даже при поверхностном знакомст­ве дает общее представление о прямой и обратной связи. Если частоты расположены по диагонали вниз направо, то связь между признаками прямая (при увеличивающихся значениях признака в строках и графах). Если же частоты расположены по диагонали вверх направо, то связь обратная.

8. Корреляционное отношение. Если произведено измере­ние явления по двум признакам, то имеется возможность находить меры рассеяния (главным образом дисперсию) по результативному признаку для одних и тех же значений факториального признака.

Дана, например, корреляционная таблица двух взаимозави­симых рядов, в которых для простоты имеется лишь три.значе­ния факториального признака количества внесенных удобрений (х), а результативный признак-урожайность (у)-значитель­но колеблется. Таблица 16

Каждая группа участков с разной урожайностью имела раз­ное количество внесенных удобрений. Так, когда вносилось удобрений по 20 г/ урожайность" на разных участках была рав­ной: на одном участке она составила 0,8 т, на двух участках- 0,9 т, на трех- 1,0 т и на одном - 1,1 т. Найдем среднюю уро­жайность и дисперсию по урожайности для этой группы уча­стков.

Для группы участков с количеством внесенных удобрений 30,0 г средняя урожайность составит:

Вычислим аналогичные характеристики для группы участ­ков. получивших удобрений по 40 т:

Из этих данных можно определить также средний урожай всех 20 участков, независимо от количества внесенных удобре­ний, т. е. общую среднюю:

и меру колеблемости (дисперсию) средней урожайности групп около общей средней. Эту дисперсию называют межгрупповой ^дисперсией и обозначают б 2

где уi-средние урожайности по группам участков, отличаю­щихся количеством внесенных удобрений; m1,m2,m3,-числен­ности групп. Межгрупповая дисперсия для данного примера составит:

Межгрупповая дисперсия показывает рассеяние, возникаю­щее за счет факториального признака. В данном примере У= == 0,01&247 является показателем рассеяния урожайности, возникшего за счет разности в количестве внесенных удобрений.

Однако, кроме межгрупповой дисперсии, можно вычислить и дисперсию как показатель рассеяния за счет остальных фак­торов (если называть так все прочие факторы, кроме удоб­рений). Этот показатель явится средней (взвешенной) величи­ной из показателей рассеяния (дисперсий) по группам участков

Это практически означает, что можно получить общую меру рассеяния (дисперсию) для всех 20 участков, если имеются сведения о средних и дисперсиях по группам участков, отличающихся количеством внесенных удобрений. Следовательно, общая дисперсия по урожайности для 20 участков составит;

Формулы для исчисления межгрупповой и средней из груп­повых дисперсий можно сокращенно записать так:

Расчет общей дисперсии, внутригрупповой и межгрупповой дисперсии позволяет делать некоторые выводы о мере влияния факториального признака на колеблемость признака резуль­тативного. Эта мера влияния находится при помощи корреля­ционного отношения:

Значит, колеблемость по урожайности участков на 78% зависит от колеблемости количества внесенных удобрений.

Линейный коэффициент корреляции

При изучении тесноты связи между двумя взаимозависимыми рядами применяется линейный коэффициент корреляции, который показывает, существует ли и насколько велика связь между этими рядами. Он может принимать значения в пределах от –1 до +1.

10.Совокупный коэффициент корреляции :

,

где r – линейные коэффициенты корреляции, а подстрочные знаки показывают, между какими признаками они исчисляются.



© 2024. childer.ru. Сайт о развитии и воспитании детей.