Коэффициент автокорреляции. Коэффициент автокорреляции и его оценка

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

    факторы, формирующие тенденцию ряда;

    факторы, формирующие циклические колебания ряда;

    случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой н
аходится экономика страны.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

§ 5.2. Автокорреляция уровней временного ряда и выявление его структуры

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда .

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Рассмотрим пример.

Пример 1. Расчет коэффициентов автокорреляции уровней для временного ряда расходов на конечное потребление .

Пусть имеются следующие условные данные о средних расходах на конечное потребление (, д. е.) за 8 лет (таблица 1).

Таблица 1

Расчет коэффициента автокорреляции первого порядка для временного ряда расходов на конечное потребление, д. е.

Разумно предположить, что расходы на конечное потребление в текущем году зависят от расходов на конечное потребление предыдущих лет.

Определим коэффициент корреляции между рядами и
и измерим тесноту связи между расходами на конечное потребление текущего и предыдущего годов. Добавим в табл. 1 временной ряд
.

Одна из рабочих формул для расчета коэффициента корреляции имеет вид:

.

В качестве переменной мы рассмотрим ряд
, в качестве переменной– ряд
. Тогда приведенная выше формула примет вид

,

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка , так как он измеряет зависимость между соседними уровнями ряда и
, т. е. при лаге 1.

Для данных примера 1 соотношения (2) составят:

Используя формулу (1), получаем коэффициент автокорреляции первого порядка:

.

Полученное значение свидетельствует об очень тесной зависимости между расходами на конечное потребление текущего и непосредственно предшествующего годов и, следовательно, о наличии во временном ряде расходов на конечное потребление сильной линейной тенденции.

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и
и определяется по формуле

,

,

Для данных из примера 1 получим:

Построим табл. 2.

Полученные результаты еще раз подтверждают вывод о том, что ряд расходов на конечное потребление содержит линейную тенденцию.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом . С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше
.

Подставив полученные значения в формулу (3), имеем:

.

Таблица 2

Расчет коэффициента автокорреляции второго порядка для временного ряда расходов на конечное потребление, д. е.

Отметим два важных свойства коэффициента автокорреляции:

Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда . График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка, ряд содержит циклические колебания с периодичностью вмоментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

Временной ряд расходов на конечное потребление, рассмотренный нами в примере 1, содержит только тенденцию, так как коэффициенты автокорреляции его уровней высокие.

Пример 2 Автокорреляционная функция и выявление структуры ряда.

Пусть имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов (табл. 3).

Таблица 3

Потребление электроэнергии жителями региона, млн. кВт ч

Нанесем эти значения на график:

Определим коэффициент корреляции первого порядка. Он составит:
. Отметим, что расчет этого коэффициента производился по 15, а не по 16 парам наблюдений. Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней. Однако, как следует из графика, структура этого ряда такова, что каждый следующий уровеньзависит от уровня
и
в гораздо большей степени, чем от уровня
. Рассчитаем коэффициенты автокорреляции до порядка 8. Получим автокорреляционную функцию этого ряда. Ее значения и коррелограмма приведены в таблице 4.

Таблица 4

Коррелограмма временного ряда потребления электроэнергии

Коэффициент автокорреляции уровней

Коррелограмма

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде, во-первых , линейной тенденции, во-вторых , сезонных колебаний периодичностью в четыре квартала. Данный вывод подтверждается и графическим анализом структуры ряда (см. график).

Аналогично, если, например, при анализе временного ряда наиболее высоким оказался коэффициент автокорреляции уровней второго порядка, ряд одержит циклические колебания в два периода времени, т.е. имеет пилообразную структуру .

Проверка показателя и факторов на автокорреляцию установила, что все включенные в анализ переменные имели высокий (надежный) коэффициент автокорреляции (+ г > г табл = 0,299, - г > г табл = 0,399 при а = 5 % и /V= 20) . Однако известно, что фактор времени, введенный в модель, снимает автокорреляцию (основанием к такому утверждению являются теоремы Фриша и Роу ), поэтому для получения динамических моделей нами использовались и простейшие формы связи типа (23), (24).  


Распространены следующие способы вычисления коэффициента автокорреляции.  

Если полученное по одной из этих формул значение коэффициента автокорреляции окажется меньше табличного, то это свидетельствует об отсутствии во временном ряде существенной автокорреляции.  

Рекомендуется исчислять ряд коэффициентов автокорреляции в зависимости от временного лага (напомним, что коэффициент автокорреляции исчисляется между двумя векторами данных, один из которых - исходный динамический ряд, а другой - такой же, но сдвинутый на 1,2, 3 и т.д. моментов наблюдения). Формула коэффициента автокорреляции  

Рассмотрим коэффициенты автокорреляции валютного курса рубля к доллару США  

Приведем рассчитанные нами значения коэффициента автокорреляции для упомянутых факторов (лаг = 1-3 мес.) ВВП 0,86 -0,52  

Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени на 1 период (год), на 2, на 3 и т. д., поэтому говорят о коэффициентах автокорреляции разных порядков первого, второго и т. д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.  

Автокорреляцию измеряют при помощи нециклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (I). Этот сдвиг, именуемый временным лагом, определяет и порядок коэффициентов автокорреляции. Различают коэффициенты автокорреляции первого порядка (при L- 1), второго порядка (при L = 2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента первого порядка, так как наиболее  

Тогда формулу коэффициента автокорреляции можно записать следующим образом  

Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.  

Следовательно, прежде чем коррелировать ряды динамики (по уровням), необходимо проверить каждый ряд на наличие или отсутствие в них автокорреляции (при помощи коэффициента автокорреляции, описанного в предыдущем параграфе). В случае наличия автокорреляции между уровнями ряда она должна быть устранена. Рассмотрим способы ее исключения в рядах динамики.  

Так как коэффициент р(т) измеряет корреляцию между членами одного и того же ряда, его называют коэффициентом автокорреляции, а зависимость р(т) - автокорреляционной функцией . В силу стационарности временного ряда у, (t= 1,2,..., ri) автокорреляционная функция р(т) зависит только от лага т, причем  

Пример 6.1. По данным табл. 6.1 для временного ряда у, найти среднее значение , среднее квадратическое отклонение , коэффициенты автокорреляции (для лагов т=1 2) и частный коэффициент автокорреляции 1-го порядка.  

Найдем коэффициент автокорреляции г(т) временного ряда (для лага т = 1), т. е. коэффициент корреляции между последовательностями семи пар наблюдений yt и у/ч-i (t= 1,2,...,7)  

Л =213 171+171 291+... +351 361=642 583.

Коэффициент автокорреляции г(2) для лага т = 2 между членами ряда yt и yt+2 (1,2 -. 6) по шести парам наблюдений вычисляем аналогично г(2)=0,842.  

Эту величину называют еще коэффициентом автокорреляции первого порядка. Так как согласно допущениям МНК математическое ожидание ошибки равно нулю, то формулу можно упростить  

Мы можем считать, что автокорреляция отсутствует, если выборочный коэффициент автокорреляции незначимо отличается от нуля, то есть в данном случае мы должны проверить гипотезу  

На практике проверяется не независимость, а некоррелированность ошибок, которая является необходимым, но недостаточным условием независимости. Для этого нужно рассчитать коэффициент автокорреляции первого порядка  

Для рассматриваемого здесь случая эта величина равна Pk k+i = 0.987. Очевидно, что коэффициент автокорреляции  

Формулы для расчета коэффициентов автокорреляции старших порядков легко получить из формулы линейного коэффициента корреляции.  

Коэффициент автокорреляции остатков первого порядка определяется по формуле  

Фактическое значение d сравниваем с табличными значениями при 5%-ном уровне значимости. При п = 18 месяцев и т = 2 (число факторов) нижнее значение d равно 1,05, а верхнее - 1,53. Так как фактическое значение d близко к 4, можно считать, что автокорреляция в остатках характеризуется отрицательной величиной. Чтобы проверить значимость отрицательного коэффициента автокорреляции, найдем величину  

По данным за 30 месяцев некоторого временного ряда хг были получены значения коэффициентов автокорреляции уровней П = 0,63 г2 = 0,38 гг = 0,72 г4 = 0,97 г5 = О,55 г6 = 0,40 г7 = 0,65 г - коэффициенты автокорреляции t-го порядка.  

Так как значения всех коэффициентов автокорреляции достаточно высокие, ряд содержит тенденцию. Поскольку наибольшее абсолютное значение имеет коэффициент автокорреляции 4-го порядка г4, ряд содержит периодические колебания, цикл этих колебаний равен 4.  

Определите коэффициенты автокорреляции уровней этого ряда первого и второго порядка.  

Оцените качество каждого тренда через среднюю ошибку аппроксимации , линейный коэффициент автокорреляции отклонений.  

Для определения типа колебаний применяются графическое изображение, метод поворотных точек М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены далее.  

Теперь обратимся к рис. 9.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами, и коэффициент автокорреляции первого порядка будет близок к -1. При долгопериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее цикл, тем больше перевес положительных произведений в числителе, и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных , ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распределенных во времени колебаний, так и циклических. Коэффициенты автокорреляции следующих порядков II = - 0,577 III = -0,611 IV = -0,095 V = +0,376 VI = +0,404 VII = +0,044. Следовательно, противофаза цикла ближе всего к 3 годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к 6 годам, что и дает длину цикла колебаний. Эти максимальные по абсолютной величине коэффициенты не близки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.  

Для суждения о наличии или отсутствии автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5%-ного или 1%-ного уровня значимости (вероятности допустить ошибку при принятии нулевой гипотезы

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда , а график зависимости ее значений от величины лага (порядка коэффициента автокорреляции) - коррело-граммой.  

Критерий Дарбина - Уотсона и коэффициент автокорреляции остатков первого порядка связаны соотношением  

В значительной части временных рядов между уровнями, особенно близко расположенных, существует взаимосвязь, т.е. значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутых на несколько шагов во времени. Число уровней, по которым рассчитывается коэффициент автокорреляции, называется лагом .

y t и y t -1 , т.е. коэффициент автокорреляции 1-го порядка

, .

Отметим, что расчет коэффициента автокорреляции производится по (n –1), а не по n парам наблюдений.

Определим теперь коэффициент автокорреляции 2-го порядка , коэффициент корреляции между рядами y t и y t -2 , т.е.

, (9.15)

, .

Отметим, что расчет коэффициента автокорреляции 2-го порядка уже будет производится по (n –2) парам наблюдений.

Следует учитывать, что с увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Поэтому некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный порядок коэффициента автокорреляции не должен превышать n /4.

Отметим два важных свойства коэффициента автокорреляции:

Во-первых, он строится по аналогии с обычным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициентам автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, парабола или экспонента), коэффициенты автокорреляции уровней могут приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

По длинному временному ряду можно определить серию коэффициентов автокорреляции, последовательно увеличивая величину лага: r 1 , r 2 , r 3 , … Последовательность коэффициентов автокорреляции называется автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет уточнить структуру временного ряда, выявить наличие или отсутствие в нём тенденции или периодических колебаний. Если временной ряд характеризуется чётко выраженной линейной тенденцией, то для него коэффициент автокорреляции 1-го порядка приближается к 1. Если же временной ряд содержит периодические колебания, то и автокорреляционная функция также будет содержать периодические колебания. Если временной ряд не содержит периодических колебаний, то коррелограмма представляет собой затухающую функцию, т.е. коэффициенты автокорреляции высоких порядков приближаются к нулю.



Анализ коррелограммы – это порой довольно непростая задача. Поэтому мы кратко остановимся на типичном поведении коррелограмм для некоторых классов временных рядов. Для начала рассмотрим поведение коррелограммы для некоторых нестационарных временных рядов. На графиках кроме значений самой функции, обычно указывают доверительные пределы этой функции

Для временного ряда, содержащего тренд , коррелограмма не стремится к нулю с ростом значения лага t. Ее характерное поведение изображено на рис.9.1.

Рис. 9.1. Коррелограмма ряда урожайности зерновых культур в Росиис 1945 по 1989 гг. в ц/га: а) исходный временной ряд; б) его коррелограмма.

Для временного ряда с сезонными колебаниями коррелограмма также будет содержать периодические всплески, соответствующие периоду сезонных колебаний. Это позволяет устанавливать предполагаемый период сезонности. Типичное поведение коррелограммы приведено на рис.9.2.

Рис. 9.2. Коррелограмма ряда месячных продаж шампанского за 7 последовательных лет в логарифмической шкале (после удаления линейного тренда): а) преобразованный исходный временной ряд; б) его коррелограмма.



Пример 9.1. Имеются поквартальные условные данные об объемах потребления электроэнергии жителями региона.

Таблица 9.7

Построить автокорреляционную функцию временного ряда.

Решение. Для расчета коэффициентов автокорреляции исходного временного ряда составим таблицу (табл. 9.8):

Таблица 9.8

t y t y t -1 y t -2 y t -3 y t -4 y t -5 y t -6
6,0
4,4 6,0
5,0 4,4 6,0
9,0 5,0 4,4 6,0
7,2 9,0 5,0 4,4 6,0
4,8 7,2 9,0 5,0 4,4 6,0
6,0 4,8 7,2 9,0 5,0 4,4 6,0
10,0 6,0 4,8 7,2 9,0 5,0 4,4
8,0 10,0 6,0 4,8 7,2 9,0 5,0
5,6 8,0 10,0 6,0 4,8 7,2 9,0
6,4 5,6 8,0 10,0 6,0 4,8 7,2
11,0 6,4 5,6 8,0 10,0 6,0 4,8
9,0 11,0 6,4 5,6 8,0 10,0 6,0
6,6 9,0 11,0 6,4 5,6 8,0 10,0
7,0 6,6 9,0 11,0 6,4 5,6 8,0
10,8 7,0 6,6 9,0 11,0 6,4 5,6

Определим коэффициент корреляции между рядами y t и y t -1 , т.е. коэффициент автокорреляции 1-го порядка. Отметим, что расчет коэффициента автокорреляции производится по 15, а не по 16 парам наблюдений. Составим таблицу для расчета коэффициента автокорреляции 1-го порядка (таб. 9.9):

Таблица 9.9

t y t y t -1
6,0
4,4 6,0 -2,987 -1,067 3,186 8,920 1,138
5,0 4,4 -2,387 -2,667 6,364 5,696 7,111
9,0 5,0 1,613 -2,067 -3,334 2,603 4,271
7,2 9,0 -0,187 1,933 -0,361 0,035 3,738
4,8 7,2 -2,587 0,133 -0,345 6,691 0,018
6,0 4,8 -1,387 -2,267 3,143 1,923 5,138
10,0 6,0 2,613 -1,067 -2,788 6,830 1,138
8,0 10,0 0,613 2,933 1,799 0,376 8,604
5,6 8,0 -1,787 0,933 -1,668 3,192 0,871
6,4 5,6 -0,987 -1,467 1,447 0,974 2,151
11,0 6,4 3,613 -0,667 -2,409 13,056 0,444
9,0 11,0 1,613 3,933 6,346 2,603 15,471
6,6 9,0 -0,787 1,933 -1,521 0,619 3,738
7,0 6,6 -0,387 -0,467 0,180 0,150 0,218
10,8 7,0 3,413 -0,067 -0,228 11,651 0,004
Среднее 110,8 9,813 65,317 54,053

По данным таблицы находим

, .

Используя формулу (9.14), находим

.

Определим теперь коэффициент автокорреляции 2-го порядка, коэффициент корреляции между рядами y t и y t -2 . Отметим, что расчет коэффициента автокорреляции 2-го порядка уже будет производиться по 14 парам наблюдений. Составим таблицу для расчета коэффициента автокорреляции 2-го порядка (таб. 9.10):

Таблица 9.10

t y t y t -2
6,0
4,4
5,0 6,0 -2,600 -1,071 2,786 6,760 1,148
9,0 4,4 1,400 -2,671 -3,740 1,960 7,137
7,2 5,0 -0,400 -2,071 0,829 0,160 4,291
4,8 9,0 -2,800 1,929 -5,400 7,840 3,719
6,0 7,2 -1,600 0,129 -0,206 2,560 0,017
10,0 4,8 2,400 -2,271 -5,451 5,760 5,159
8,0 6,0 0,400 -1,071 -0,429 0,160 1,148
5,6 10,0 -2,000 2,929 -5,857 4,000 8,577
6,4 8,0 -1,200 0,929 -1,114 1,440 0,862
11,0 5,6 3,400 -1,471 -5,003 11,560 2,165
9,0 6,4 1,400 -0,671 -0,940 1,960 0,451
6,6 11,0 -1,000 3,929 -3,929 1,000 15,434
7,0 9,0 -0,600 1,929 -1,157 0,360 3,719
10,8 6,6 3,200 -0,471 -1,509 10,240 0,222
Среднее 106,4 -31,120 55,760 54,049

По данным таблицы находим

, .

Используя формулу (9.15), находим

.

Аналогичным образом рассчитываем коэффициенты автокорреляции 3-го и более высоких порядков. (Заметим, что в программе Exel коэффициенты корреляции рассчитываются при помощи функции КОРРЕЛ). В результате получим автокорреляционную функцию исходного временного ряда. Ее значения и коррелограмма приведены в таб. 9.11.

Таблица 9.11

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде, во-первых , линейной тенденции, во-вторых , сезонных колебаний периодичностью в четыре квартала. Данный вывод подтверждается и графическим анализом структуры ряда (см. рис. 9.1).

После расчетов необходимо определить на каком лаге коэффициент будет максимальным (как правило, это первый лаг) и оценить его значимость. Предпосылкой для решения данной задачи является возможность проявления ошибки репрезентативности при анализе выборочных данных. Проверяется статистическая гипотеза: генеральный коэффициент автокорреляции равен нулю (следовательно, полученное значение выборочного коэффициента автокорреляции является следствием проявление случайной ошибки репрезентативности). Альтернативная гипотеза: генеральный коэффициент автокорреляции отличен от нуля (следовательно, полученное значение выборочного коэффициента автокорреляции может рассматриваться как оценка неизвестного генерального коэффициента автокорреляции по выборочным данным). Гипотезы проверяются через расчет t-критерия Стьюдента и сравнение расчетного значения с теоретическим.

Где r – коэффициент автокорреляции, σ r – стандартная ошибка коэффициента автокорреляции.

Ошибка рассчитывается следующим образом:

Где n – число уровней ряда

Теоретическое значение критерия Стьюдента при уровне значимости 0,05 и числе степеней свобод 12 равно 2,17

Расчетное значение критерия превосходит теоретическое (16,69 против 2,17), следовательно коэффициент автокорреляции на первом лаге признается значимым.

Наличие высокой автокорреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

(один из видов модели регрессии). Такая модель называется авторегрессией и позволяет решать задачу экстраполяции и прогнозирования.

Практика показывает, что часто в отклонениях от тренда сохраняется автокорреляция. Прежде чем приступить к расчету коэффициента корреляции по остаткам, необходимо проверить наличие в них автокорреляции. Проверяемая статистическая гипотеза (H0:) формулируется следующим образом:

H0: автокорреляция в анализируемом динамическом ряду отсутствует.

Наиболее распространенным статистическим критерием оценки автокорреляции в отклонениях от тренда, является критерий Дарбина – Уотсона (d0 ), статистика критерия определяется по следующей формуле:

,

где – случайные отклонения от тренда .

Значение критерия изменяется в интервале от «0» до «4». При 0 < d < 2 - автокорреляция положительная,

если 2 < d < 4 – автокорреляция отрицательная.

Близость величины критерия к «2» говорит об отсутствии или несущественной автокорреляции. Оценки, получаемые по критерию «d», являются интервальными. Существуют таблицы распределения значений критерия Дарбина – Уотсона, составленные для различных уровней значимости. Таблицы составлены с учетом числа наблюдений в динамическом ряду и числа переменных в уравнении тренда.

По таблице в каждом конкретном случае находят нижнюю ( ) и верхнюю ( ) границы критерия. Результат сравнения расчетного значения с табличным интерпретируется следующим образом:

1. > , - H0 - принимается;

2. < , - H0 - отвергается;

3. , необходимо дальнейшее исследование (например, по более протяженному временному ряду).

Для проверки остатков на наличие автокорреляции можно просто рассчитать коэффициенты автокорреляции по остаткам. Данная задача решается аналогично задаче оценки автокорреляции динамических рядов. Единственное отличие: исходные данные в этом случае – это остатки по оптимальному тренду (берутся из отчетов)

Отсутствие автокорреляции в остатках определяется по величине коэффициента (меньше 0,5 – автокорреляция отсутствует). Решение данной задачи дополнительно подтверждает качество выбора тренда.

Кросс-корреляция динамических рядов – это корреляционная зависимость между динамическими рядами с заданным временным смещением (лагом). Внимание! Расчет коэффициентов кросс-корреляции проводится по остаткам с оптимальных трендов по динамическим рядам. Необходимость исключения трендовой составляющей динамического ряда объясняется тем, что при коррелировании уровней однонаправленных рядов значительно искажаются (завышаются результаты расчетов).

Остатки по двум динамическим рядам берутся из отчетов по оптимальным трендам.

Смещение (лаг) задается по аналогии с задачей автокорреляции.

Вторым отличием является необходимость рассмотрения прямой и обратной зависимости.

Последовательность задания исходных данных значения в данном случае не имеет, так как в любом случае рассматривается прямая зависимость – импорт к экспорту, и обратная – экспорт к импорту соответственно.

Третье отличие - на нулевом лаге смещение не задается

По полученным коэффициентам кросс-корреляции строится коррелограмма

По аналогии с решением задачи автокорреляции необходимо оценить значимость максимального коэффициента кросс-корреляции (как правило, это коэффициент на нулевом лаге).

Наличие высокой кросс-корреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

(в качестве модели регрессии выбирается оптимальный тренд. В данном случае линейный). Такая модель называется регрессионной моделью с включением фактора времени) и позволяет решать задачу экстраполяции и прогнозирования.

Уровни второго динамического ряда с заданным смещением на величину лага

Введение

Периодическая зависимость играть роль общего типа компонентов временного ряда. Не сложно заметить, что каждое наблюдение очень похоже на пограничное; к тому же имеется повторяющаяся периодическая составляющая, что означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад.

В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) - м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.

Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.

Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Теоретические сведения

Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n - постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (n) = E[(x(t) - m) (x (t + n) - m)] -

и автокорреляции

r (n) = E[(x(t) - m) (x (t + n) - m)] / D,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t 1), x(t 2)).

r (n) = g (n) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

Главным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).