Каким замечательным свойством обладают биссектрисы треугольника. Биссектриса угла. Полные уроки — Гипермаркет знаний

Среди многочисленных предметов среднеобразовательной школы есть такой, как «геометрия». Традиционно считается, что родоначальниками этой систематической науки являются греки. На сегодняшний день греческую геометрию называют элементарной, так как именно она начала изучение простейших форм: плоскостей, прямых, и треугольников. На последних мы и остановим свое внимание, а точнее на биссектрисе этой фигуры. Для тех, кто уже подзабыл, биссектриса треугольника представляет собой отрезок биссектрисы одного из углов треугольника, который делит его пополам и соединяет вершину с точкой, размещенной на противолежащей стороне.

Биссектриса треугольника имеет ряд свойств, которые необходимо знать при решении тех или иных задач:

  • Биссектриса угла представляет собой геометрическое место точек, удаленных на равных расстояниях от прилегающих к углу сторон.
  • Биссектриса в треугольнике делит противоположную от угла сторону на отрезки, которые пропорциональны прилежащим сторонам. Например, дан треугольник MKB, где из угла K выходит биссектриса, соединяющая вершину этого угла с точкой A на противолежащей стороне MB. Проанализировав данное свойство и наш треугольник, имеем MA/AB=MK/KB.
  • Точка, в которой пересекаются биссектрисы всех трех углов треугольника, является центром окружности, которая вписана в этот же треугольник.
  • Основание биссектрис одного внешнего и двух внутренних углов находятся на одной прямой, при условии, что биссектриса внешнего угла не является параллельной противоположной стороне треугольника.
  • Если две биссектрисы одного то этот

Необходимо отметить, что если заданы три биссектрисы, то построение треугольника по ним, даже с помощью циркуля, невозможно.

Очень часто при решении задач биссектриса треугольника неизвестна, а необходимо определить ее длину. Для решения такой задачи необходимо знать угол, который делится биссектрисой пополам, и прилегающие к этому углу стороны. В этом случае искомая длина определяется как отношение удвоенного произведения прилегающих к углу сторон и косинуса угла деленного пополам к сумме прилегающих к углу сторон. Например, дан все тот же треугольник MKB. Биссектриса выходит из угла K и пересекает противоположную сторону МВ в точке А. Угол, из которого выходит биссектриса, обозначим y. Теперь запишем все то, что сказано словами в виде формулы: KA = (2*MK*KB*cos y/2) / (MK+KB).

Если величина угла, из которого выходит биссектриса треугольника, неизвестна, но известны все его стороны, то для вычисления длины биссектрисы мы воспользуемся дополнительной переменной, которую назовем полупериметр и обозначим буквой P: P=1/2*(MK+KB+MB). После этого внесем некоторые изменения в предыдущую формулу, по которой определялась длина биссектрисы, а именно, в числитель дроби ставим удвоенный из произведения длин сторон, прилегающих к углу, на полупериметр и частное, где из полупериметра вычитается длина третьей стороны. Знаменатель оставим без изменения. В виде формулы это будет выглядеть так: KA=2*√(MK*KB*P*(P-MB)) / (MK+KB).

Биссектриса равнобедренного треугольника вместе с общими свойствами имеет и несколько своих. Вспомним, что это за треугольник. У такого треугольника две стороны равны, и равны прилегающие к основанию углы. Отсюда следует, что биссектрисы, которые опускаются на боковые стороны равнобедренного треугольника, равны между собой. Кроме того, биссектриса, опущенная на основание, одновременно является и высотой, и медианой.

Биссектриса треугольника – распространенное геометрическое понятие, которое не вызывает особых затруднений в изучении. Владея знаниями о ее свойствах, с решением многих задач можно справиться без особого труда. Что такое биссектриса? Постараемся ознакомить читателя со всеми секретами этой математической прямой.

Вконтакте

Суть понятия

Наименование понятия пошло от использования слов на латыни, значение которых заключается «би» — две, «сектио» — разрезать. Они конкретно указывают на геометрический смысл понятия – разбивание пространства между лучами на две равные части .

Биссектриса треугольника – отрезок, который берет начало из вершины фигуры, а другой конец размещен на стороне, которая расположена напротив него, при этом делит пространство на две одинаковые части.

Многие педагоги для быстрого ассоциативного запоминания учащимися математических понятий пользуются разной терминологией, которая отображена в стихах или ассоциациях. Конечно, использовать такое определение рекомендуется для детей старшего возраста.

Как обозначается эта прямая? Здесь опираемся на правила обозначения отрезков или лучей. Если речь идет об обозначении биссектрисы угла треугольной фигуры, то обычно ее записывают как отрезок, концы которого являются вершиной и точкой пересечения с противоположной вершине стороной . Причем начало обозначения записывается именно из вершины.

Внимание! Сколько биссектрис имеет треугольник? Ответ очевиден: столько же, сколько вершин, – три.

Свойства

Кроме определения, в школьном учебнике можно найти не так уж много свойств данного геометрического понятия. Первое свойство биссектрисы треугольника, с которым знакомят школьников, – центр вписанной , а второе, напрямую связанное с ним, – пропорциональность отрезков. Суть заключается в следующем:

  1. Какая бы ни была делящая прямая, на ней расположены точки, которые находятся на одинаковом расстоянии от сторон , которые составляют пространство между лучами.
  2. Для того чтобы вписать в треугольную фигуру окружность, необходимо определить точку, в которой будут пересекаться эти отрезки. Это и есть центральная точка окружности.
  3. Части стороны треугольной геометрической фигуры, на которые разбивает ее делящая прямая, находятся в пропорциональной зависимости от образующих угол сторон .

Постараемся привести в систему остальные особенности и представить дополнительные факты, которые помогут глубже познать достоинства этого геометрического понятия.

Длина

Одним из видов задач, которые вызывают затруднение у школьников, является нахождение длины биссектрисы угла треугольника. Первый вариант, в котором находится ее длина, содержит такие данные:

  • величина пространства между лучами, из вершины которого выходит данный отрезок;
  • длины сторон, которые образуют этот угол.

Для решения поставленной задачи используется формула , смысл которой заключается в нахождении отношения увеличенного в 2 раза произведения значений сторон, составляющих угол, на косинус его половины к сумме сторон.

Рассмотрим на определенном примере. Допустим, дана фигура АВС, в которой отрезок проведен из угла А и пересекает сторону ВС в точке К. Значение А обозначим Y. Исходя из этого, АК = (2*АВ*АС*cos(Y/2))/(АВ+АС).

Второй вариант задачи, в котором определяется длина биссектрисы треугольника, содержит такие данные:

  • известны значения всех сторон фигуры.

При решении задачи такого типа первоначально определяем полупериметр . Для этого необходимо сложить значения всех сторон и разделить пополам: р=(АВ+ВС+АС)/2. Далее применяем вычислительную формулу, с помощью которой определялась длина данного отрезка в предыдущей задаче. Необходимо только внести некоторые изменения в суть формулы в соответствии с новыми параметрами. Итак, необходимо найти отношение увеличенного в два раза корня второй степени из произведения длин сторон, которые прилегают к вершине, на полупериметр и на разность полупериметра и длины противолежащей ему стороны к сумме сторон, составляющих угол. То есть АК=(2٦АВ*АС*р*(р-ВС))/(АВ+АС).

Внимание! Чтобы легче освоить материал, можно обратиться к имеющимся в Интернете шуточным сказкам, повествующим о «приключениях» этой прямой.

Внутренних углов треугольника называется биссектрисой треугольника.
Под биссектрисой угла треугольника также понимают отрезок между его вершиной и точкой пересечения биссектрисы с противолежащей стороной треугольника.
Теорема 8. Три биссектрисы треугольника пересекаются в одной точке.
Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе угла А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе угла В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.
Свойства биссектрис внутреннего и внешнего углов треугольника
Теорема 9 . Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Доказательство. Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке Мпродолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠ АВК=∠ КВС. Далее, ∠ АВК=∠ ВМС, как соответственные углы при параллельных прямых, и ∠ КВС=∠ ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ ВСМ=∠ ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК:К С=АВ:ВМ=АВ:ВС, что и требовалось доказать.
Теорема 10 Биссектриса внешнего угла В треугольника АВС обладает аналогичным свойством: отрезки AL и CL от вершины А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника: AL :CL =AB :BC .
Это свойство доказывается так же, как и предыдущее: на рисунке проведена вспомогательная прямая СМ, параллельная биссектрисе BL . Углы ВМС и ВСМ равны, а значит, и стороны ВМ и ВС треугольника ВМС равны. Из чего приходим к выводу AL:CL=AB:BC.

Теорема d4. (первая формула для биссектрисы): Если в треугольнике ABC отрезок AL является биссектрисой угла A, то AL? = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC <=> AL · (AL + LM) = AB · AC <=> AL? = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать. Примечание: теорему об отрезках пересекающихся хорд в круге и о вписанных углах смотри в теме круг и окружность .

Теорема d5. (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и углом A, равным 2? и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cos?.

Доказательство: Пусть ABC - данный треугольник, AL - его биссектриса (рис. 42), a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, absin2? = alsin? + blsin? <=> 2absin?·cos? = (a + b)·lsin? <=> l = 2·(ab / (a+b))· cos?. Теорема доказана.

Сорокина Вика

Приведено доказательства свойств биссектрисы треугольника и рассмотрено применение теориик решению задач

Скачать:

Предварительный просмотр:

Комитет по образованию администрации г. Саратова, Октябрьский район Муниципальное автономное образовательное учреждение Лицей №3 им. А. С. Пушкина.

Муниципальная научно-практическая

конференция

«Первые ступени»

Тема: Биссектриса и ее свойства.

Работу выполнила: ученица 8 г класса

Сорокина Виктория Научный руководитель: Учитель математики высшей категории Попова Нина Федоровна.

Саратов 2011 г

  1. Титульный лист…………………………………………………………...1
  2. Содержание ………………………………………………………………2
  3. Введение и цели………………………………………………………... ..3
  4. Рассмотрение свойств биссектрисы
  • Третье геометрическое место точек………………………………….3
  • Теорема 1……………………………………………………………....4
  • Теорема 2………………………………………………………………4
  • Основное свойство биссектрисы треугольника:
  1. Теорема 3……………………………………………………………...4
  2. Задача 1…………………………………………………………… ….7
  3. Задача 2……………………………………………………………….8
  4. Задача 3…………………………………………………………….....9
  5. Задача 4…………………………………………………………….9-10
  • Теорема 4…………………………………………………………10-11
  • Формулы нахождения биссектрисы:
  1. Теорема 5…………………………………………………………….11
  2. Теорема 6…………………………………………………………….11
  3. Теорема 7…………………………………………………………….12
  4. Задача 5…………………………………………………………...12-13
  • Теорема 8…………………………………………………………….13
  • Задача 6………………………………………………………...…….14
  • Задача 7……………………………………………………………14-15
  • Определение с помощью биссектрисы сторон света………………15
  1. Заключение и вывод……………………………………………………..15
  2. Список используемой литературы ……………………………………..16

Биссектриса

На уроке геометрии, изучая тему подобные треугольники, я встретилась с задачей на теорему об отношении биссектрисы к противолежащим сторонам. Казалось бы, что может быть интересного в теме биссектриса, однако эта тема меня заинтересовала, и мне захотелось изучить ее глубже. Ведь биссектриса очень богата своими удивительными свойствами, помогающими решать разные задачи.

При рассмотрении данной темы можно заметить,что в учебниках геометрии очень мало говорится о свойствах биссектрисы, а на экзаменах, зная их можно значительно проще и быстрее решать задачи. К тому же для сдачи ГИА и ЕГЭ современным ученикам нужно самим изучать дополнительные материалы к школьной программе. Именно поэтому я и решила подробнее изучить тему биссектриса.

Биссектриса (от лат. bi- «двойное», и sectio «разрезание») угла - луч с началом в вершине угла, делящий угол на две равные части. Биссектриса угла (вместе с её продолжением) есть геометрическое место точек равноудалённых от сторон угла (или их продолжений )

Третье геометрическое место точек

Фигура F является геометрическим местом точек (множеством точек), обладающих некоторым свойством А, если выполняются два условия:

  1. из того, что точка принадлежит фигуре F, следует, что она обладает свойством А;
  2. из того, что точка удовлетворяет свойству А, следует, что она принадлежит фигуре F.

Первое геометрическое место точек, рассматриваемое в геометрии - это окружность, т.е. геометрическое место точек, равноудаленных от одной фиксированной точки. Второе - серединный перпендикуляр отрезка, т.е. геометрическое место точек, равноудаленных от конца отрезка. И, наконец, третье - биссектриса - геометрическое место точек, равноудаленных от сторон угла

Теорема 1:

Точки биссектрисы одинаково удалены от стор он угла.

Доказательство:

Пусть Р - точка биссектрисы А. Опустим из точки Р перпендикуляры РВ и PC на стороны угла . Тогда ВАР = САР по гипотенузе и острому углу . Отсюда, РВ = PC

Теорема 2 :

Если точка Р одинаково удалена от сторон угла А, то она лежит на биссектрисе .

Доказательство: РВ = PC => ВАР = САP => BAP= CAP => АР – биссектриса.

К числу основных геометрических фактов следует отнести теорему о том, что биссектриса делит противолежащую сторону в отношении противолежащих сторон. Этот факт долго оставался в тени но повсеместно встречаются задачи, которые гораздо легче решать, если знать этот и другие факты о биссектрисе. Мне стало интересно, и я решила глубже исследовать это свойство биссектрисы.

Основное свойство биссектрисы угла треугольника

Теорема 3 . Биссектриса делит противолежащую сторону треугольника в отношении прилежащих сторон .

Доказательство 1:

Дано : AL - биссектриса треугольника ABC

Доказать:

Доказательство: Пусть F - точка пересечения прямой AL и прямой, проходящей через точку В параллельно стороне АС.

Тогда BFA = FАС = BAF. Следовательно, BAF равнобедренный и АВ = BF. Из подобия треугольников ALC и FLB имеем

соотношение

откуда

Доказательство 2

Пусть F- точка пересеченная прямой AL и прямой, проходящей через точку С параллельно основанию АВ. Тогда можно повторить рассуждения.

Доказательство 3

Пусть К и М - основания перпендикуляров, опущенных на прямую AL из точек В и С соответственно. Треугольники ABL и ACL подобны по двум углам. Поэтому
. А из подобия BKL и CML имеем

Отсюда

Доказательство 4

Применим метод площадей. Вычислим площади треугольников ABL и ACL двумя способами.

Отсюда .

Доказательство 5

Пусть α= ВАС,φ= BLA. По теореме синусов в треугольнике ABL

А в треугольнике ACL .

Так как ,

То, поделив обе части равенства на соответствующие части другого, получим .

Задача 1


Дано: В треугольнике ABC, ВК – биссектриса, ВС=2, КС=1,

Решение:

Задача 2

Дано:

Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18

Решение:

Пусть катет AC = 18, катет BC = 24,

AM - биссектриса треугольника.

По теореме Пифагора находим,

что AB = 30.

Поскольку , то

Аналогично найдем вторую биссектрису.

Ответ:

Задача 3

В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC

В точке D . Известно, что BD = 4, DC = 6.

Найдите площадь треугольника ADC

Решение:

По свойству биссектрисы треугольника

Обозначим AB = 2 x , AC = 3 x . По теореме

Пифагора BC 2 + AB 2 = AC 2 , или 100 + 4 x 2 = 9 x 2

Отсюда находим, что x = Тогда AB = , S ABC=

Следовательно,

Задача 4

Дано:

В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12.

Биссектрисы углов A и C пересекаются в точке D . Найдите BD .

Решение:

Поскольку биссектрисы треугольника пересекаются в

Одной точке, то BD - биссектриса B . Продолжим BD до пересечения с AC в точке M . Тогда M - середина AC , BM AC . Поэтому

Поскольку CD - биссектриса треугольника BMC , то

Следовательно,.

Ответ:

Теорема 4 . Три биссектрисы треугольника пересекаются в одной точке.

Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.


Формулы нахождения биссектрисы
Теорема5: (первая формула для биссектрисы ): Если в треугольнике ABC отрезок AL является биссектрисой A, то AL² = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC AL · (AL + LM) = AB · AC AL² = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать.

Теорема6: . (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и A, равным 2α и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cosα.

Доказательство : Пусть ABC - данный треугольник, AL - его биссектриса, a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, ab sin2α = a l sinα + b l sinα 2ab sinα·cosα = (a + b)·l sinα l = 2·(ab / (a+b))· cosα. Теорема доказана.

Теорема 7: Если a,b – стороны треугольника,Ү- угол между ними, - биссектриса этого угла. Тогда .

Тема урока

Биссектриса угла

Цели урока

Пополнить знания школьников о биссектрисе угла и ее свойствах;
Ознакомить с новой информацией о биссектрисе угла;
Расширить знания учеников о том, что теорему о свойствах биссектрисы можно доказывать разными способами;
Развивать логическое мышление, интерес к математическим наукам, настойчивость и способность к анализу.

Задачи урока

Расширить знания учеников о биссектрисе угла;
Закрепить навыки построения биссектрисы угла при помощи чертежных инструментов;
Получить дополнительные и интересные сведения по данной теме;
Дать сведения о значении теоремы в развитии математики;
Закрепить полученные знания путем решения задач;
Воспитывать усидчивость, любознательность и желание изучать математические науки.

План урока

1. Раскрытие главной темы урока о биссектрисе угла;
2. Повторение пройденного материала;
3. Занимательная информация о биссектрисе.
4. Историческая справка, греческая геометрия.
5. Домашнее задание.

Биссектриса угла

Сегодняшний урок мы с вами посвятим теме биссектрисы. Давайте вспомним определения биссектрисы.

Биссектрисой является геометрическое место точек, равноудаленное от сторон угла.

Если говорить проще, то биссектриса – это линия, разделяющая угол пополам.

Биссектрисой угла - луч, выходящий из вершины угла и делящий его на два других равных угла.

Слово «биссектриса» в переводе с французского языка обозначает, как надвое рассекающая или равноделящая угол пополам.

Биссектриса треугольника

Кроме биссектрисы угла еще бывает биссектриса треугольника, ведь треугольник содержит целых три угла, соответственно каждый треугольник может иметь три разных биссектрисы.

Что же такое биссектриса треугольника? Биссектриса треугольника является отрезком биссектрисы угла, соединяющим в треугольнике его вершину с точкой на противоположной стороне.



Биссектриса треугольник обладает определенными уникальными свойствами. Так, например, она разделяет противоположную сторону на отрезки, которые являют пропорциональными другим двум сторонам.



Что касается прямоугольного треугольника, то его биссектрисы именно острых углов, когда пересекаются, образуют угол именно в 45 градусов.

К тому же, не стоит забывать и такое свойство биссектрис треугольника, как то, что пересекаются они строго в центре вписанного в треугольник круга.

Ну а самое интересное то, что для равнобедренного треугольника линия, которая проведена к основанию, будет и биссектрисой, и медианой, и высотой. Соответственно и обратное правило, что если медиана, высота и биссектриса, которое проведены из одной вершины треугольника, совпадают, то перед нами равнобедренный треугольник.

А какие вы можете вспомнить свойства прямоугольного и равнобедренного треугольника?

Построение биссектрисы

Биссектрису угла строится с помощью транспортира, при использовнии его градусной меры. Чтобы приступить к построению биссектрисы, мы берем и делим градусную меру пополам и, отложив на одной стороне вершины градусную меру половинного угла, и тогда вторая половина становится биссектрисой заданного угла.



Берем заданный угол, который имеет градусную меру в девяносто градусов, и с помощью биссектрисы получаем два построенных угла по 45 градусов.

Развернутый угол при помощи биссектрисы разделяет угол на 2 прямых угла. Тупой же угол при построении биссектрисы разделяет его на 2 острых угла.

Из определения биссектрисы нам известно, что она является лучом, разделяющим угол пополам. Чтобы построить биссектрису, значит, нужно угол разделить пополам.

Алгоритм построения биссектрисы угла

1. Вначале чертим окружность с центром в вершине угла таким образом, чтобы она пересекала его стороны.



3. Чертим 2 окружности радиусом так, чтобы они имели точку пересечения внутри этого угла.



4. Теперь проводим из вершины угла луч таким методом, чтобы он проходил через точку пересечения этих окружностей. Этот луч и является биссектрисой данного угла.



А теперь давайте попробуем доказать, что полученный луч является биссектрисой этого угла. Возьмем на примере двух треугольников, у которых одна сторона общая, то есть отрезок от вершины до точки пересечения окружностей, которую мы получили в 3п.

2-я пара соответствующих сторон – это полученные в 1п., отрезки, которые идут от вершины угла до точек пересечения окружности с его сторонами.

Третья пара соответствующих сторон - это соответственно отрезки, полученные в 1п. от точек пересечения окружности, до точки пересечения окружностей, но полученных в 3п.

Следовательно, 2 пары данных отрезков равны, поскольку являются радиусами одной или двух окружностей, но с одинаковым радиусом. Отсюда следует, что по всем трем сторонам треугольники равны. Известно, что когда треугольники равны, то равны и их углы. Поэтому при вершине два новых угла и данных угла по условию задачи равны, следовательно, что построенный луч будет биссектрисой.

Занимательная информация о биссектрисе

Знали ли вы, что существует такая наука, которая называется мнемоника, что в переводе с греческого языка обозначает искусство запоминания. И чтобы лучше запомнить определение биссектрисы существует такое мнемоническое правило, по которому биссектриса – это крыса, которая бегает по углам и делит угол пополам.



Известно ли вам, что еще Архимед использовал теорему о биссектрисе. Он ее применял для деления основания на части, которые пропорциональны боковым сторонам с целью определения длины полу сторон двенадцати угольника, 24-угольника и т. д.

Легенда о биссектрисе угла

Сказка о двух Углах и Биссектрисе, или Образование Смежного угла.

Однажды два угла повстречались на одной площади. Старшему углу было около 130 градусов, а младшему всего пятьдесят. Так как это сказка, то заменим годы на градусы. Вот они встретились и начали спорить, кто из них лучше и важнее. Старший считал, что приоритет на его стороне, так как он старше, мудрее и больше на своем веку повидал за свои 130°. Младший наоборот твердил, что он моложе, потому сильнее и выносливее. И чтобы спор не длился вечность, они приняли решение провести турнир. Об этих состязаниях узнала Биссектриса и решила победить своих врагов одновременно и возглавить Геометрию.

И вот настало долгожданное время турнира, на котором было 2 Угла. В момент полного разгара сражений появилась Биссектриса и решила принять участие. Но тут в бой с Биссектрисой вступил вначале старший Угол, затем подтянулся и младший, и победа все равно оказалась на стороне Биссектрисы.