Как определить вершины параболы. Вывод формул координат вершины парабопы

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники.

Проект урока по алгебре в 9 классе (гуманитарный профиль).

«Наиболее глубокий след оставляет то, что человек открыл сам».(Д. Пойя.)

Тема урока: «Вывод формул для вычисления координат вершины параболы».

Цели урока : познавательные :

Ожидаемый результат:

- осознание, принятие и разрешение проблемы учащимися;

Формирование способов получения новых знаний через сравнение и сопоставления фактов, способа от частного к общему;

Узнают формулы нахождения координат вершины и оси симметрии параболы для функций вида y = ax 2 +bx+c.

Тип урока: урок постановки учебной задачи. Методы обучения – наглядно-иллюстративный, словесный, обучение в сотрудничестве, проблемный, элементы технологии критического мышления.

Оборудование: компьютер, мультимедийный проектор, демонстрационный экран, слайды презентации по теме: «Формулы для нахождения координат вершины параболы»; листы формата А3; цветные маркеры.

Технология - системно-деятельностный подход.

Этапы урока:

    Психологический настрой(мотивация).

    Актуализация опорных знаний(создание ситуации успеха).

    Постановка проблемы.

    Формулирование темы и цели урока.

    Решение проблемы.

    Анализ хода решения проблемы.

    Применение результатов решения проблемы в последующей деятельности.

    Подведение итогов урока (итог «глазами» ученика, итог «глазами» учителя.).

    Домашнее задание.

Ход урока:

    Психологический настрой.

Задача: Учится решать общую задачу и работать в коллективе(работа в группах по 5 чел.).

Ребята, на протяжении последних четырёх уроков мы занимались изучением квадратичной функции, но знания наши пока ещё не совсем полные, поэтому мы продолжаем изучать квадратичную функцию с целью узнать что-то новое об этой функции.

Мотивация учащихся к самостоятельной постановке темы и цели урока.

Функция
и ее график.

;
;

Не выполняя построения графика функций, можем ли мы ответить на вопросы:

    Что является графиком функций?

    Какая прямая является осью симметрии (если она существует)?

3. Есть ли вершина, каковы её координаты?

Хочу узнать

Таблица заполняется по ходу проведения урока.

    Актуализация опорных знаний и умений учащихся. Разминка. 1. Вынести за скобки старший коэффициент: 5x 2 + 25x -5; ax 2 + bx + c. 2.Выделить удвоенное произведение: ab; ax; b/a. 3.Возвести в квадрат: b/2; c 2 /a; 2a/3b. 4.Представить в виде алгебраической суммы: а – в; x –(- b/2a).

Объясните, как, зная вид графика функции y =ƒ( x ) , построить графики функций:

а) y =ƒ(x - a ) , - с помощью параллельного переноса на а единиц вправо вдоль оси х ;

б) y =ƒ(x ) + b , - с помощью параллельного переноса на b единиц вверх вдоль оси y ;

в) y =ƒ(x - а) + b , ↔ на а единиц, ↕ на b единиц;

г) Как построить график функции y = (x - 2) 2 + 3 ? Что является ее графиком?

Назовите вершину параболы.
Графиком является парабола y = x 2 с вершиной в точке (2; 3).

Назовите координаты вершины параболы: y =x- 4x + 5 ( проблема). Почему нельзя определить координаты вершины параболы по виду функции? (другой вид имеет квадратичная функция).

Деятельность учащихся:

Строят речевые конструкции с использованием функциональной терминологии.

Обсуждение ответов. Сравнивают, сопоставляют с ранее изученными функциями, выбирают и записывают на доске знания и умения, которые им могут понадобиться для решения проблемы в столбик «ЗНАЮ»:

2.

3.

4.

В столбик «Хочу узнать»:вершину, ось симметрии параболы
.

Учащиеся могут записывать в столбики «ЗНАЮ» и «ХОЧУ ЗНАТЬ» функции как в общем виде, так и частные случаи. Постановка учебной задачи: найти координаты вершины параболы, если квадратичная функция задана в общем виде y = ax+ bx + c . Учащиеся формулируют и записывают в тетрадь тему и цель урока. (Вывод формул для вычисления координат вершины параболы. Научиться находить координаты вершины параболы новым способом – по формулам).

Решение проблемы.

Деятельность учащихся: Сравнивая «старые» знания с новыми знаниями учащиеся предлагают выделить полный квадрат. На конкретных примерах
;
и получают соответственно
;
. Находят координаты вершины и уравнение оси симметрии, Понимают, что с задачей справились, т.к. привели новую функцию к знакомому виду.

Учащиеся выделяют полный квадрат для функции
; , сравнивают полученный результат, делают вывод по данной функции. Находят координаты вершины и ось симметрии.

Сможете ли вы назвать вершину и ось параболы, если функция задана в общем виде
, не выделяя полного квадрата? Как вы будете действовать в этом случае? И как применить ваш предыдущий опыт по нахождению вершины и оси параболы?

Деятельность учащихся:

Опираясь на уже имеющиеся знания, опыт учащиеся начинают понимать, что нужно идти дальше, от частного к общему, проводят доказательства в общем виде.

Появляются новые затруднения. В группах появляется решение: . Анализ хода решения проблемы. Заслушивается один представитель от каждой группы.

Сравнивают, анализируют записи
и
, записывается в тетрадь одно общее решение поставленной задачи - формулы координат вершины параболы
.

Учащиеся делают вывод: координаты вершины и ось параболы для функции
можно найти рациональным способом.

Применение результатов по решению проблемы в последующей деятельности.

Деятельность учащихся:

Решение заданий из учебника №121; 123. Найдите координаты вершины параболы новым рациональным способом. Запишите уравнение прямой, которая является осью симметрии параболы.

Подведение итогов (рефлексия учебной деятельности на уроке).

Вернемся к таблице и заполним столбик «УЗНАЛ».

Итог урока «глазами» учащихся:

ХОЧУ УЗНАТЬ

2.

3.

4.

5. знаю, как построить графики этих функций

6. знаю, как найти координаты вершины этих парабол и ось параболы

7. метод выделения полного квадрата

8. как находить координаты вершин, ось параболы.


2. уравнение оси симметрии параболы

1. координаты вершины параболы

2 .как вывести формулу

3. рациональный способ нахождения оси параболы и координат вершины параболы

Итог « глазами учителя»:

    Цель урока достигнута.

    Учащиеся осознали, приняли и разрешили возникшую проблему.

    В процессе решения учебно-проблемной задачи учащиеся не только приобрели новые знания: зависимость коэффициентов квадратного трехчлена и координат вершины параболы, уравнения оси симметрии, но самое главное на уроке – формирование обобщенных способов приобретения новых знаний, самостоятельного анализа проблемы и нахождения неизвестного.

Домашнее задание : п.7 №122 ;127(б) ;128.

P.S. Представленный урок проведен 15 октября 2014 года в рамках городского семинара учителей математики по теме «Формирование УУД на уроках математики».

На этапе «Применение результатов…» при решении заданий из учебника некоторые учащиеся начали понимать ценность своего «открытия»: более простого способа нахождения координат вершины и уравнения оси симметрии, а другие не скрывали радости, ведь не надо «мучаться» с выделением полного квадрата. Но самое главное – сделали все сами!

Параболой является график квадратичной функции. Данная линия обладает весомым физическим значением. Для того чтобы легче было найти вершину параболы, нужно ее нарисовать. Тогда на графике с легкостью можно будет увидеть ее вершину. Но чтобы построить параболу, необходимо знать, как найти точки параболы и как найти координаты параболы.

Находим точки и вершину параболы

В общем представлении квадратичная функция имеет следующий вид: y = ax 2 + bx + c. Графиком данного уравнения является парабола. При значении а › 0, ее ветви направлены вверх, а при значении а ‹ 0 – вниз. Для построения параболы на графике необходимо знать три точки, если она проходит вдоль оси ординат. В противном случае, должно быть известно четыре точки построения.

При нахождении абсциссы (х) необходимо взять коэффициент при (х) из заданной формулы многочлена, а затем разделить на удвоенный коэффициент при (x 2), после чего умножить на число – 1.

Для того чтобы найти ординату необходимо найти дискриминант, затем умножить его на – 1, после чего разделить на коэффициент при (x 2), предварительно умножив его на 4.

Далее, подставляя численные значения, вычисляется вершина параболы. Для всех расчетов желательно использовать инженерный калькулятор, а при черчении графиков и парабол пользоваться линейкой и люмографом, это позволит значительно повысить точность ваших расчетов.

Рассмотрим следующий пример, который поможет нам понять, как найти вершину параболы.

x 2 -9=0. В данном случае координаты вершины рассчитываются следующим образом: точка 1 (-0/(2*1); точка 2 -(0^2-4*1*(-9))/(4*1)). Таким образом, координатами вершины являются значения (0; 9).

Находим абсциссу вершины

После того, как вы узнали, как найти параболу, и можете рассчитать точки ее пересечения с осью координат (х), можно легко вычислить абсциссу вершины.

Пусть (x 1) и (х 2) являются корнями параболы. Корни параболы – это точки ее пересечения с осью абсцисс. Данные значения обращают в ноль квадратное уравнение следующего вида: ax 2 + bx + c.

При этом |x 2 | > |x 1 |, значит вершина параболы расположена посередине между ними. Таким образом, ее можно найти по следующему выражению: x 0 = ½(|x 2 | - |x 1 |).

Находим площадь фигуры

Для нахождения площади фигуры на координатной плоскости нужно знать интеграл. А чтобы применить его, достаточно знать определенные алгоритмы. Для того чтобы найти площадь, ограниченную параболами, необходимо произвести ее изображение в декартовой системе координат.

Вначале, по описанному выше методу, определяется координата вершины оси (х), затем оси (у), после чего находится вершина параболы. Теперь следует определить пределы интегрирования. Как правило, они указываются в условии задачи при помощи переменных (а) и (b). Данные значения следует поместить в верхнюю и нижнюю части интеграла соответственно. Далее следует вписать в общем виде значение функции и умножить его на (dx). В случае с параболой: (x 2)dx.

Затем нужно вычислить в общем виде первообразное значение функции. Для этого следует воспользоваться специальной таблицей значений. Подставляя туда пределы интегрирования, находится разность. Данная разность и будет являться площадью.

В качестве примера рассмотрим систему уравнений: у = x 2 +1 и х+у=3.

Находятся абсциссы точек пересечения: х 1 =-2 и х 2 =1.

Полагаем, что у 2 =3, а у 1 =x 2 + 1, подставляем значения в вышеприведенную формулу и получаем значение равное 4,5.

Теперь мы узнали как найти параболу, а также, основываясь на этих данных, рассчитать площадь фигуры, которую она ограничивает.

Содержимое:

Вершина параболы – это самая высокая или самая низкая ее точка. Чтобы найти вершину параболы, вы можете воспользоваться специальной формулой или методом дополнения до полного квадрата. Ниже описано, как это сделать.

Шаги

1 Формула для нахождения вершины

  1. 1 Найдите величины a, b, и c. В квадратном уравнении коэффициент при x 2 = a, при x = b, постоянная (коэффициент без переменной) = c. Например, возьмем уравнение: y = x 2 + 9x + 18. Здесь a = 1, b = 9, and c = 18.
  2. 2 Воспользуйтесь формулой для вычисления значения координаты x вершины. Вершина также является точкой симметрии параболы. Формула для нахождения координаты x параболы: x = -b/2a. Подставьте в нее соответствующие значения для вычисления x .
    • x=-b/2a
    • x=-(9)/(2)(1)
    • x=-9/2
  3. 3 Подставьте найденное значение x в исходное уравнение для вычисления значения y. Теперь, когда вам известно значение x, просто подставьте его в исходное уравнение для нахождения y. Таким образом, формулу для нахождения вершины параболы можно записать в виде функции: (x, y) = [(-b/2a), f(-b/2a)] . Это значит, что для нахождения y необходимо сначала найти x по формуле, а затем подставить значение x в исходное уравнение. Вот как это делается:
    • y = x 2 + 9x + 18
    • y = (-9/2) 2 + 9(-9/2) +18
    • y = 81/4 -81/2 + 18
    • y = 81/4 -162/4 + 72/4
    • y = (81 - 162 + 72)/4
    • y = -9/4
  4. 4 Запишите значения x и y в виде пары координат. Теперь, когда вам известно, что x = -9/2, а y = -9/4, запишите их как координаты в виде: (-9/2, -9/4). Вершина параболы находится по координатам (-9/2, -9/4). Если вам нужно нарисовать эту параболу, то ее вершина лежит в нижней точке, так как коэффициент при x 2 положительный.

2 Дополнение до полного квадрата

  1. 1 Запишите уравнение. Дополнение до полного квадрата – еще один способ найти вершину параболы. Применив этот метод, вы найдете координаты x и y сразу, без необходимости подставлять x в исходное уравнение. Например, дано уравнение: x 2 + 4x + 1 = 0.
  2. 2 Разделите каждый коэффициент на коэффициент при x 2 . В нашем случае коэффициент при x 2 равен 1, поэтому мы можем пропустить этот шаг. Деление на 1 ничего не изменит.
  3. 3 Перенесите постоянную в правую часть уравнения. Постоянная – коэффициент без переменной. Здесь это "1". Перенесите 1 вправо путем вычитания 1 из обеих частей уравнения. Вот как это сделать:
    • x 2 + 4x + 1 = 0
    • x 2 + 4x + 1 -1 = 0 - 1
    • x 2 + 4x = - 1
  4. 4 Дополните до полного квадрата левую часть уравнения. Для этого просто найдите (b/2) 2 и прибавьте результат к обеим частям уравнения. Подставьте "4" вместо b , так как "4x" – это коэффициент b нашего уравнения.
    • (4/2) 2 = 2 2 = 4. Теперь прибавьте 4 к обеим частям уравнения и получите:
      • x 2 + 4x + 4 = -1 + 4
      • x 2 + 4x + 4 = 3
  5. 5 Упрощаем левую часть уравнения. Мы видим, что x 2 + 4x + 4 – полный квадрат. Он может быть записан в виде: (x + 2) 2 = 3
  6. 6 Используйте его для нахождения координат x и y. Вы можете найти x, просто приравняв (x + 2) 2 к 0. Теперь, когда (x + 2) 2 = 0, вычисляем x: x =-2. Координата y – это постоянная в правой части полного квадрата. Итак, y = 3. Вершина параболы уравнения x 2 + 4x + 1 = (-2, 3)
  • Правильно определяйте a, b, и c.
  • Записывайте предварительные вычисления. Это не только поможет в процессе работы, но и позволит увидеть, где сделаны ошибки.
  • Не нарушайте порядок вычислений.

Предупреждения

  • Проверьте ваш ответ!
  • Удостоверьтесь, что вы знаете, как определить коэффициента a, b, и c. Если вы не знаете, ответ будет неправильным.
  • Не – решение таких задач требует практики.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Инструкция

Квадратичная функция в общем виде записывается уравнением: y = ax² + bx + c. Графиком этого уравнения является , ветви которой направлены вверх (при a > 0) или вниз (при a < 0). Школьникам предлагается просто запомнить формулу вычисления координат вершины . Вершина параболы в точке x0 = -b/2a. Подставив это значение в квадратное , получите y0: y0 = a(-b/2a)² - b²/2a + c = - b²/4a + c.

Людям, знакомым с понятием производной, легко найти вершину параболы. Независимо от положения ветвей параболы ее вершина является точкой (минимума, если ветви направлены вверх, или , когда ветви направлены вниз). Чтобы найти точки предполагаемого экстремума любой , надо вычислить ее первую производную и приравнять ее к нулю. В общем виде производная равна f"(x) = (ax² + bx + c)" = 2ax + b. Приравняв к нулю, вы получите 0 = 2ax0 + b => x0 = -b/2a.

Парабола - симметричная линия. Ось проходит через вершину параболы. Зная точки параболы с осью координат X, можно легко найти абсциссу вершины x0. Пусть x1 и x2 - корни параболы (так называют точки пересечения параболы с осью абсцисс, поскольку эти значения обращают квадратное уравнение ax² + bx + c в ноль). При этом пусть |x2| > |x1|, тогда вершина параболы лежит посередине между ними и может быть найдена из следующего выражения: x0 = ½(|x2| - |x1|).

Видео по теме

Источники:

  • Квадратичная функция
  • формула нахождения вершины параболы

Парабола – это график квадратичной функции, в общем виде уравнение параболы записывается y=aх^2+bх+с, где а≠0. Это универсальная кривая второго порядка, которая описывает многие явления в жизни, например, движение подбрасываемого и затем падающего тела, форму радуги, поэтому умение найти параболу может очень пригодиться в жизни.

Вам понадобится

  • - формула квадратичного уравнения;
  • - лист бумаги с координатной сеткой;
  • - карандаш, ластик;
  • - компьютер и программа Excel.

Инструкция

В первую очередь найдите вершину параболы. Чтобы найти абсциссу этой точки, возьмите коэффициент перед х, разделите его на удвоенный коэффициент перед х^2 и умножьте на -1 ( х=-b/2a). Ординату найдите, подставив полученное значение в уравнение или по формуле у=(b^2-4ac)/4a. Вы получили координаты точки вершины параболы.

Вершину параболы можно найти и другим способом. Так как является экстремумом функции, то для ее вычисления вычислите первую производную и приравняйте ее к нулю. В общем виде вы получите формулу f(x)" = (ax? + bx + c)" = 2ax + b. А приравняв ее к нулю, вы придете к той же самой формуле - х=-b/2a.

Узнайте, направлены ли ветви параболы вверх или вниз. Для этого посмотрите на коэффициент перед х^2, то есть на а. Если а>0, то ветви направлены вверх, если а

Координаты вершины параболы найдены. Запишите их в виде координат одной точки (x0,y0).

Видео по теме

Для функций (точнее их графиков) используется понятие наибольшего значения, в том числе и локального максимума. Понятие же «вершина» скорее связано с геометрическими фигурами. Точки максимумов гладких функций (имеющих производную) легко определить с помощью нулей первой производной.

Инструкция

Для точек, в которых функция не дифференцируема, но непрерывна, наибольшее на промежутке значение может иметь вид острия (на y=-|x|). В таких точках к функции можно провести сколь угодно касательных для нее просто не существует. Сами функции такого типа обычно задаются на отрезках. Точки, в которых производная функции равна нулю или не существует, называются критическими.

Реение. y=x+3 при x≤-1 и y=((x^2)^(1/3)) –х при x>-1. Функция задана на отрезках умышленно, так как в данном случае преследуется цель отобразить все в одном примере. Легко , что при х=-1 функция остается непрерывной.y’=1 при x≤-1 и y’=(2/3)(x^(-1/3))-1=(2-3(x^(1/3))/(x^(1/3)) при x>-1. y’=0 при x=8/27. y’ не существует при x=-1 и x=0.При этом y’>0 если x

Видео по теме

Парабола – одна из кривых второго порядка, ее точки построены в соответствии с квадратным уравнением. Главное в построении этой кривой – найти вершину параболы . Это можно сделать несколькими способами.

Инструкция

Чтобы найти координаты вершины параболы , воспользуйтесь следующей формулой: х=-b/2а, где а – коэффициент перед х в , а b – коэффициент перед х. Подставьте ваши значения и рассчитайте его . Затем подставьте полученное значение вместо х в уравнение и посчитайте ординату вершины. Например, если вам дано уравнение у=2х^2-4х+5, то абсциссу найдите следующим образом: х=-(-4)/2*2=1. Подставив х=1 в уравнение, рассчитайте значение у для вершины параболы : у=2*1^2-4*1+5=3. Таким образом, вершина параболы имеет координаты (1;3).

Значение ординаты параболы можно найти и без предварительного расчета абсциссы. Для этого воспользуйтесь формулой у=-b^2/4ас+с.

Если вы знакомы с понятием производной, найдите вершину параболы при помощи производных, воспользовавшись следующим свойством любой : первая производная функции, приравненная к нулю, указывает на . Так как вершина параболы , независимо от того, направлены ее ветви вверх или вниз, точкой , вычислите производную для вашей функции. В общем виде она будет иметь вид f(х)=2ах+b. Приравняйте ее к нулю и получите координаты вершины параболы , соответствующей вашей функции.

Попробуйте найти вершину параболы , воспользовавшись таким ее свойством, как симметричность. Для этого найдите точки пересечения параболы с осью ох, приравняв функцию к нулю (подставив у=0). Решив квадратное уравнение, вы найдете х1 и х2. Так как парабола симметрична относительно директрисы, проходящей через вершину , эти точки будут равноудалены от абсциссы вершины. Чтобы ее найти, разделим