Что такое насыщенный и ненасыщенный пар. Молекулярная физика. Насыщенные и ненасыщенные пары. Основные отличия насыщенного пара от ненасыщенного

Прежде, чем отвечать на вопрос, поставленный в названии статьи, разберемся, что такое пар. Образы, возникающие у большинства людей при этом слове: кипящий чайник или кастрюля, парилка, горячий напиток и еще множество подобных картинок. Так или иначе, в наших представлениях присутствует жидкость и газообразная субстанция, поднимающаяся над ее поверхностью. Если вас попросят привести пример пара, вы сразу вспомните водяной пар, пары спирта, эфира, бензина, ацетона.

Существует еще одно слово для обозначения газообразных состояний – газ . Здесь мы обычно вспоминаем кислород, водород, азот и другие газы, не ассоциируя их с соответствующими жидкостями. При этом хорошо известно, что они существуют и в жидком состоянии. На первый взгляд различия заключаются в том, что пар соответствует естественным жидкостям, а газы надо сжижать специально. Однако это не совсем верно. Более того, образы, возникающие при слове пар – паром не являются. Чтобы дать более точный ответ, разберемся, как возникает пар.

Чем отличается пар от газа?

Агрегатное состояние вещества задается температурой, точнее соотношением между энергией, с которой взаимодействуют его молекулы и энергией их теплового хаотического движения. Приближенно, можно считать, что если энергия взаимодействия значительно больше – твердое состояние, если значительно больше энергия теплового движения — газообразное, если энергии сравнимы – жидкое.

Получается, чтобы молекула могла оторваться от жидкости и участвовать в образовании пара, величина тепловой энергии должна быть больше энергии взаимодействия. Как это может произойти? Средняя скорость теплового движения молекул равна определенному значению, зависящему от температуры. Однако индивидуальные скорости молекул различны: большая их часть обладает скоростями близкими к среднему значению, но некоторая часть имеет скорости больше средней, некоторая — меньше.

Более быстрые молекулы могут иметь тепловую энергию большую, чем энергия взаимодействия, а значит, попав на поверхность жидкости, способны оторваться от нее, образуя пар. Такой способ парообразования называется испарением . Из-за того же распределения скоростей существует и противоположный процесс — конденсация: молекулы из пара переходят в жидкость. Кстати образы, которые обычно возникают при слове пар, это не пар, а результат противоположного процесса — конденсации. Пар увидеть нельзя.

Пар при определенных условиях может стать жидкостью, но для этого его температура не должна превышать определенного значения. Это значение называется критической температурой. Пар и газ — газообразные состояния, отличающиеся температурой, при которой они существуют. Если температура не превышает критической — пар, если превышает – газ. Если поддерживать температуру постоянной и уменьшать объем, пар — сжижается, газ – не сжижается.

Что такое пар насыщенный и ненасыщенный

Само слово «насыщенный» несет определенную информацию, трудно насытить большую область пространства. Значит, чтобы получить насыщенный пар, надо ограничить пространство, в котором находится жидкость . Температура при этом должна быть меньше критической для данного вещества. Теперь испарившиеся молекулы остаются в пространстве, где находится жидкость. Сначала большинство переходов молекул будет происходить из жидкости, при этом плотность пара будет повышаться. Это в свою очередь вызовет большее число обратных переходов молекул в жидкость, что увеличит скорость процесса конденсации.

Наконец, устанавливается состояние, для которого среднее число молекул, переходящих из одной фазы в другую будет равным. Такое состояние называется динамическое равновесие . Для этого состояния характерно одинаковое изменение величины и направления скоростей испарения и конденсации. Это состояние соответствует насыщенному пару. Если состояние динамического равновесия не достигнуто, это соответствует ненасыщенному пару.

Начинают изучение какого-то объекта, всегда с самой простой его модели. В молекулярно-кинетической теории это — идеальный газ. Основные упрощения здесь — пренебрежение собственным объемом молекул и энергией их взаимодействия. Оказывается, подобная модель вполне удовлетворительно описывает ненасыщенный пар. Причем чем менее он насыщен, тем правомернее ее применение. Идеальный газ — это газ, он не может стать ни паром, ни жидкостью. Следовательно, для насыщенного пара подобная модель не является адекватной.

Основные отличия насыщенного пара от ненасыщенного

  1. Насыщенный означает, что данный объект имеет самое большое из возможных значений некоторых параметров. Для пара — это плотность и давление . Эти параметры для ненасыщенного пара имеют меньшие значения. Чем дальше пар от насыщения, тем меньше эти величины. Одно уточнение: температура сравнения должна быть постоянной.
  2. Для ненасыщенного пара выполняется закон Бойля-Мариотта : если температура и масса газа постоянны, увеличение или уменьшение объема, вызывает уменьшение или увеличение давления во столько же раз, давление и объем — связаны обратно пропорциональной зависимостью. Из максимальности плотности и давления при постоянной температуре вытекает их независимость от объема насыщенного пара, получается, что для насыщенного пара давление и объем — не зависят друг от друга.
  3. Для ненасыщенного пара плотность не зависит от температуры , и если объем сохраняется, не меняется и значение плотности. Для насыщенного пара при сохранении объема плотность изменяется, если изменяется температура. Зависимость в данном случае прямая. Если увеличивается температура, увеличивается и плотность, если температура уменьшается, так же изменяется плотность.
  4. Если объем постоянен, ненасыщенный пар ведет себя в соответствии с законом Шарля: при увеличении температуры во столько же раз увеличивается и давление. Такая зависимость называется линейной. У насыщенного пара при увеличении температуры давление возрастает быстрее, чем у ненасыщенного пара. Зависимость имеет экспоненциальный характер.

Подводя итог, можно отметить значительные различия свойств сравниваемых объектов. Основное отличие в том, что пар, в состоянии насыщения, нельзя рассматривать в отрыве от его жидкости. Это двухкомпонентная система, к которой нельзя применять большинство газовых законов.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

Как вы знаете, жидкости испаряются, то есть превращаются в пар. Например, лужи после дождя высыхают. Испарение жидкости обусловлено тем, что некоторые ее молекулы благодаря толчкам своих «соседей» приобретают кинетическую энергию, достаточную для того, чтобы вырваться из жидкости.
В результате испарения над поверхностью жидкости всегда находится пар, Это газообразное состояние вещества. Водяной пар невидим, как и воздух. То, что часто называют паром, представляет собой скопление крошечных водяных капелек, образовавшихся вследствие конденсации пара.

Конденсация – это превращение пара в жидкость, то есть процесс, противоположный испарению. Вследствие конденсации содержащегося в воздухе водяного пара образуются облака (рис. 44.1) и туман (рис. 44.2). Холодное стекло запотевает, соприкасаясь с теплым воздухом (рис. 44.3). Это тоже результат конденсации водяного пара.

Динамическое равновесие

Если банку с водой плотно закрыть, уровень воды в ней остается неизменным в течение многих месяцев.

Означает ли это, что в закрытом сосуде жидкость не испаряется?

Нет, конечно: в ней всегда есть достаточно быстрые молекулы, которые непрестанно вылетают из жидкости. Однако одновременно с испарением идет конденсация: молекулы из пара влетают обратно в жидкость.

Если уровень жидкости со временем не изменяется, это означает, что процессы испарения и конденсации идут с одинаковой интенсивностью. В таком случае говорят, что жидкость и пар находятся в динамическом равновесии.

2. Насыщенный и ненасыщенный пар

Насыщенный пар

На рисунке 44.4 схематически изображены процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным.

Ненасыщенный пар

Если сосуд с жидкостью открыть, пар начнет выходить из сосуда наружу. Вследствие этого концентрация пара в сосуде уменьшится, и молекулы пара будут реже сталкиваться с поверхностью жидкости и влетать в нее. Поэтому интенсивность конденсации уменьшится.

А интенсивность испарения остается прежней. Поэтому уровень жидкости в сосуде начнет понижаться. Если процесс испарения идет быстрее, чем процесс конденсации, говорят, что над жидкостью находится ненасыщенный пар (рис. 44.5).

В воздухе всегда есть водяной пар, но обычно он является ненасыщенным, поэтому испарение преобладает над конденсацией. Поэтому лужи и высыхают.

Над поверхностью морей и океанов пар также ненасыщенный, поэтому они постепенно испаряются. Почему же уровень воды при этом не понижается?

Дело в том, что поднимающийся вверх пар охлаждается и конденсируется, образуя облака и тучи. Они превращаются в дождевые тучи и проливаются дождями. А реки несут воду обратно в моря и океаны.

3. Зависимость давления насыщенного пара от температуры

Главное свойство насыщенного пара состоит в том, что
давление насыщенного пара не зависит от объема, а зависит только от температуры.

Это свойство насыщенного пара не так легко понять, потому что оно кажется противоречащим уравнению состояния идеального газа

pV = (m/M)RT, (1)

из которого следует, что для донной массы газа при постоянной температуре давление обратно пропорционально объему. Может быть, для насыщенного пара это уравнение неприменимо?

Ответ таков: уравнение состояния идеального газа хорошо описывает пар – как насыщенный, так и ненасыщенный. Но стоящая в правой части уравнения (1) масса насыщенного пара m при изотермическом расширении или сжатии изменяется – причем так, что давление насыщенного пара остается неизменным. Почему так происходит?

Дело в том, что при изменении объема сосуда пар может оставаться насыщенным только при условии, что в этом же сосуде находится «его» жидкость. Увеличивая изотермически объем сосуда, мы как бы «вытягиваем» из жидкости молекулы, которые становятся молекулами пара (рис. 44.6, а).

Происходит это вот почему. При увеличении объема пара его концентрация вначале уменьшается – но на очень короткий промежуток времени. Как только пар становится ненасыщенным, испарение находящейся в этом же сосуде жидкости начинает «опережать» конденсацию. В результате масса пара быстро возрастает, пока он снова не станет насыщенным. Давление пара при этом снова станет прежним.

1. Используя рисунок 44.6, б, объясните, почему при уменьшении объема насыщенного пара его масса уменьшается.

Итак, при расширении или сжатии насыщенного пара его масса изменяется за счет изменения массы содержащейся в этом же сосуде жидкости.

Зависимость давления насыщенного водяного пара от температуры измерена на опыте. График этой зависимости приведен на рисунке 44.7. Мы видим, что давление насыщенного пара очень быстро увеличивается с ростом температуры.

Главная причина увеличения давления насыщенного пара с ростом температуры – увеличение массы пара. Как вы сами убедитесь, выполняя следующее задание, при увеличении температуры от 0 ºС до 100 ºС масса насыщенного пара в одном и том же объеме увеличивается более чем в 100 раз!

В таблице приведены значения давления насыщенного водяного пара при некоторых значениях температуры.

Эта таблица поможет вам при выполнении следующего задания. Воспользуйтесь также формулой (1).

2. В герметически закрытом сосуде объемом 10 л находятся вода и насыщенный пар. Температуру содержимого сосуда повышают от 0 ºС до 100 ºС. Считайте, что объемом воды по сравнению с объемом пара можно пренебречь.
а) Во сколько раз увеличилась абсолютная температура?
б) Во сколько раз увеличилось бы давление пара, если бы он остался насыщенным?
в) Во сколько раз увеличилась бы масса пара, если бы он остался насыщенным?
г) Какой стала бы масса пара в конечном состоянии, если бы он остался насыщенным?
д) При какой минимальной массе воды в начальном состоянии пар останется насыщенным?
е) Каким будет давление пара в конечном состоянии, если начальная масса воды будет в 2 раза меньше найденной в предыдущем пункте?

3. Что увеличивается с ростом температуры быстрее – давление насыщенного пара или его плотность?
Подсказка. Формулу (1) можно записать в виде

4. Пустой герметически закрытый сосуд объемом 20 л заполнили насыщенным водяным паром при температуре 100 ºС.
а) Чему равно давление пара?
б) Чему равна масса пара?
в) Чему равна концентрация пара?
г) Каким станет давление пара, когда он остынет до 20 ºС?
д) Чему равны массы пара и воды при 20 ºС?
Подсказка. Воспользуйтесь приведенной выше таблицей и формулой (1).

4. Кипение

По приведенным выше графику (рис. 44 7) и таблице вы, наверное, заметили, что при температуре кипения воды (100 ºС) давление насыщенного водяного пара как раз равно атмосферному (пунктир на графике 44.7). Случайно ли это совпадение?

Нет, не случайно. Рассмотрим процесс кипения.

Поставим опыт
Будем нагревать воду в открытом прозрачном сосуде. Скоро на стенках сосуда появятся пузырьки. Это выделяется растворенный в воде воздух.

Внутрь этих пузырьков начинает испаряться вода, и пузырьки заполняются насыщенным паром. Но расти эти пузырьки не могут, пока давление насыщенного пара меньше давления в жидкости. В открытом неглубоком сосуде давление в жидкости практически равно атмосферному давлению.

Продолжим нагревать воду. Давление насыщенного пара в пузырьках с ростом температуры быстро увеличивается. И как только оно станет равным атмосферному давлению, начнется интенсивное испарение жидкости внутрь пузырьков.

Они будут быстро расти, подниматься вверх и лопаться на поверхности жидкости (рис. 44.8). Это и есть кипение.

В неглубоком сосуде давление в жидкости практически равно внешнему давлению. Поэтому мы можем сказать, что
кипение жидкости происходит при температуре, при которой давление p н насыщенного пара равно внешнему давлению p внеш:

p н = p внеш. (2)

Отсюда следует, что температура кипения зависит от давления. Поэтому ее можно изменять, изменяя давление жидкости. С увеличением давления температура кипения жидкости повышается. Это используют, например, для стерилизации медицинских инструментов: воду кипятят в специальных приборах – автоклавах, где давление в 1,5–2 раза выше нормального атмосферного.

Высоко в горах, где атмосферное давление существенно меньше нормального атмосферного, сварить мясо непросто: например, на высоте 5 км вода закипает уже при температуре 83 ºС.

5. Используя формулу (2) и приведенную выше таблицу, определите температуру кипения воды:
а) при давлении, равном одной пятой нормального атмосферного давления;
б) при давлении, в 2 раза большем атмосферного давления.

Кипение воды при пониженном давлении можно наблюдать в следующем опыте.

Поставим опыт
Доведем воду в колбе до кипения и плотно закроем колбу. Когда вода немного остынет, перевернем колбу и будем поливать ее дно холодной водой. Вода закипит, хотя ее температура существенно ниже 100 ºС (рис. 44.9).

6. Объясните этот опыт.

7. На какую высоту можно было бы поднять поршнем кипящую воду, если бы она при этом не остывала?


Дополнительные вопросы и задания

8. В цилиндрическом сосуде под поршнем длительное время находятся вода и водяной пар. Масса воды в 2 раза больше массы пара. Медленно перемещая поршень, объем под поршнем увеличивают от 1 л до 6 л. Температура содержимого сосуда остается все время равной 20 ºС. Считайте, что объемом воды можно пренебречь по сравнению с объемом пара.
а) Какой пар находится под поршнем вначале?
б) Объясните, почему давление в сосуде не будет изменяться до тех пор, пока объем под поршнем не станет равным З л.
в) Чему равно давление в сосуде, когда объем под поршнем равен 3 л?
г) Чему равна масса пара в сосуде, когда объем под поршнем равен 3 л?
Подсказка. При этом весь объем сосуда заполнен насыщенным паром.
д) Во сколько раз увеличилась масса пара, когда объем под поршнем увеличился от 1 л до 3 л?
е) Чему равна масса воды в начальном состоянии?
Подсказка. Воспользуйтесь тем, что в начальном состоянии масса воды в 2 раза больше массы пара.
ж) Как будет изменяться давление в сосуде при изменении объема под поршнем от 3 л до 6 л?
Подсказка. Для ненасыщенного пара справедливо уравнение состояния идеального газа с постоянной массой.
з) Чему равно давление в сосуде, когда объем под поршнем равен 6 л?
и) Начертите примерный график зависимости давления пара под поршнем от объема.

9. Две запаянные U-образные трубки наклонили, как показано на рисунке 44.10. В какой трубке над водой находится только насыщенный пар, а в какой воздух с паром? Обоснуйте свой ответ.

ПАРООБРАЗОВАНИЕ.

НАСЫЩЕННЫЙ И НЕНАСЫЩЕННЫЙ ПАР.

1.Парообразование.

Между молекулами вещества, находящегося в жидком или твёрдом состоянии, действуют силы притяжения. Для твёрдого вещества они достаточно велики. Это приводит к тому, что молекулы твёрдого вещества малоподвижны, они могут только колебаться около своего положения равновесия. В жидкости молекулы не так сильно притягиваются друг к другу, они могут перемещаться на небольшие расстояния и перескакивать на соседние положения равновесия. Однако, в результате обмена энергиями при соударениях молекул или в результате поступления энергии извне, какая-то отдельная молекула может получить такое количество кинетической энергии, которое позволит ей преодолеть силы притяжения со стороны соседних молекул и покинуть поверхность жидкости или твёрдого вещества. Некоторые из этих молекул, потеряв свою энергию, возвращаются обратно в жидкость или твёрдое вещество, но самые энергичные, которые смогли удалиться на расстояние около 10 -9 м, где силы притяжения уже практически не действуют, становятся свободными.

Переход вещества из твёрдого или жидкого состояния в газообразное называется парообразованием , а совокупность молекул вещества, покинувших поверхность жидкости или твёрдого тела, называется паром этого вещества.

Чаще всего под парообразованием понимается переход вещества в газообразное состояние из жидкого. Парообразование, происходящее из твёрдого состояния, называется возгонкой или сублимацией .

Парообразование из жидкого состояния разделяют на испарение и кипение .

2.Испарение и его интенсивность.

Испарение – это парообразование, происходящее при любой температуре только со свободной поверхности жидкости в воздух или вакуум, сопровождающееся понижением температуры жидкости.

Механизм испарения и происходящее при этом охлаждение жидкости можно объяснить с точки зрения МКТ.

Как уже говорилось выше, поверхность жидкости покидают только те молекулы, кинетическая энергия которых превышает значение работы, необходимой для преодоления сил молекулярного притяжения со стороны соседних молекул и выхода молекулы с поверхности жидкости в воздух. Эта работа называется работой выхода . В результате средняя кинетическая энергия оставшихся молекул уменьшается и, следовательно, температура жидкости понижается.

Интенсивность испарения зависит от нескольких факторов:

    от температуры жидкости;

    от площади свободной поверхности;

    от скорости удаления паров с поверхности жидкости;

    от внешнего давления;

    от рода жидкости.

Чем выше температура, чем больше площадь свободной поверхности, чем больше скорость удаления паров с поверхности жидкости, чем меньше внешнее давление, тем испарение идёт интенсивней.

Процесс перехода вещества из газообразного состояния в жидкое или твёрдое называется конденсацией .

3.Насыщенные и ненасыщенные пары.

Рассмотрим два сосуда с жидкостью – один открытый, другой закрыт крышкой. В обоих сосудах происходит и испарение жидкости, и конденсация пара.

Однако в первом случае, испарение преобладает над конденсацией, так как молекулы жидкости имеют возможность покинуть пределы сосуда и в жидкость они не возвратятся, а на их место с поверхности жидкости в воздух выходят другие молекулы. Число молекул N 1 , покидающих поверхность за 1 с, превышает число молекул N 2 , возвращающихся обратно. Если процесс испарения преобладает над процессом конденсации, то образующийся пар называется ненасыщенным .

В герметически закрытом сосуде вначале число молекул N 1 , покидающих поверхность за 1 с, превышает число молекул N 2 , возвращающихся обратно. Поэтому плотность пара над поверхностью жидкости, а также его давление возрастают. Но по мере увеличения плотности и давления возрастает количество молекул, возвращающихся в жидкость в течение 1 с. Через некоторое время скорости испарения и конденсации становятся одинаковыми, т.е. количество вылетевших из жидкости молекул N 1 равно количеству возвратившихся N 2 . Говорят, что между паром и его жидкостью установилось динамическое равновесие.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным .

4.Кипение.

Кипение – это парообразование, происходящее и с поверхности, и во всём объёме жидкости при постоянной температуре.

Механизм кипения можно объяснить следующим образом.

На стенках сосуда всегда имеются пузырьки адсорбированного газа. Кроме того, в жидкости всегда присутствует некоторое количество растворённого газа (воздуха), степень растворения которого понижается с ростом температуры, и который при нагревании начинает выделяться также в виде пузырьков. Вовнутрь пузырьков происходит испарение жидкости. Поэтому кроме воздуха внутри пузырьков находится насыщенный пар, его давление с ростом температуры увеличивается. Следовательно, пузырьки раздуваются. Действующая на пузырьки сила Архимеда становится больше их силы тяжести, и они начинают всплывать. Дальнейшее поведение пузырьков зависит от того, насколько прогрета жидкость.

Если жидкость ещё не равномерно прогрета и верхние её слои холоднее нижних, то по мере всплывания пузырьков пар внутри них конденсируется, давление внутри пузырьков уменьшается. Следовательно, уменьшается и объём пузырьков. Зависящая от объёма пузырьков сила Архимеда также становится меньше, движение пузырьков наверх замедляется и, не дойдя до поверхности жидкости, пузырьки исчезают.

Если жидкость прогрета равномерно, то по мере всплывания пузырьков объём их будет возрастать, так как уменьшается сила гидростатического давления жидкости, действующая на пузырьки. Увеличение объёма приводит к увеличению силы Архимеда. Поэтому движение пузырьков наверх ускоряется. Пузырьки достигают свободной поверхности, лопаются, и насыщенный пар выходит наружу. Этот момент называется кипением жидкости. При этом давление насыщенного пара в пузырьках практически равно внешнему давлению.

Температура, при которой давление насыщенного пара равно внешнему давлению, называется температурой кипения .

Температура кипения зависит:

1) от внешнего давления (чем оно больше, тем температура кипения выше);

2) от наличия примеси (обычно температура кипения увеличивается с ростом концентрации примеси);

3) от растворённого в жидкости воздуха или других газов (с уменьшением количества растворённого воздуха температура повышается);

4) от состояния стенок сосуда (в сосудах с более гладкими стенками жидкость закипает при более высокой температуре);

5) от рода жидкости.

5.Сравнение свойств насыщенного пара и идеального газа.

1.Давление и плотность насыщенного пара постоянны и не зависят от объёма пространства над испаряющейся жидкостью. Для идеального газа давление и плотность уменьшаются с ростом объёма.

Насыщенный пар Идеальный газ

2.С увеличением температуры при неизменном объёме рост давления насыщенного пара происходит не по линейного закону, как для идеального газа, а гораздо быстрее. Это объясняется тем, что увеличение давления происходит не только за счёт увеличения кинетической энергии, но и за счёт увеличения количества испарившихся молекул.

По этой же причине плотность насыщенного пара не остаётся постоянной, она возрастает.

3.Давление и плотность насыщенного пара зависят от рода жидкости и определяются теплотой парообразования. Чем меньше теплота парообразования, тем больше давление и плотность насыщенного пара.

ОПРЕДЕЛЕНИЕ

Испарение - это процесс превращения жидкости в пар.

В жидкости (или твердом теле) при любой температуре существует некоторое количество «быстрых» молекул, кинетическая энергия которых больше потенциальной энергии их взаимодействия с остальными частицами вещества. Если такие молекулы оказываются вблизи поверхности, то они могут преодолеть притяжение остальных молекул и вылететь за пределы жидкости, образуя над ней пар. Испарение твердых тел также часто называют возгонкой или сублимацией .

Испарение происходит при любой температуре, при которых данное вещество может находиться в жидком или твердом состояниях. Однако интенсивность испарения зависит от температуры. При повышении температуры количество «быстрых» молекул увеличивается, и, следовательно, интенсивность испарения возрастает. Скорость испарения также зависит от площади свободной поверхности жидкости от вида вещества. Так, например, вода, налитая в блюдце, испарится быстрее воды, налитой в стакан. Спирт испаряется быстрее воды и т.д.

Конденсация

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается. Но в плотно закрытом сосуде этого не происходит. Объясняется это тем, что одновременно с испарением в жидкости (или твердом теле) происходит обратный процесс. Молекулы пара движутся над жидкостью хаотически, поэтому часть из них под действием притяжения молекул свободной поверхности попадает обратно в жидкость. Процесс превращения пара в жидкость называется конденсацией. Процесс превращения пара в твердое тело обычно называют кристаллизацией из пара.

После того, как мы нальем жидкость в сосуд и плотно его закроем, жидкость начнет испаряться, и плотность пара над свободной поверхностью жидкости будет увеличиваться. Однако, одновременно с этим будет расти число молекул, возвращающихся обратно в жидкость. В открытом сосуде ситуация иная: покинувшие жидкость молекулы могут не возвращаться в жидкость. В закрытом сосуде с течением времени устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся в жидкость. Такое состояние называется состоянием динамического равновесия (рис.1). В состоянии динамического равновесия между жидкостью и паром одновременно происходит и испарение и конденсация, и оба процесса компенсируют друг друга.

Рис.1. Жидкость в состоянии динамического равновесия

Насыщенный и ненасыщенный пар

ОПРЕДЕЛЕНИЕ

Насыщенный пар - это пар, находящийся в состоянии динамического равновесия со своей жидкостью.

Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара. Насыщенный пар имеет максимальную плотность при данной температуре, а, следовательно, оказывает максимальное давление на стенки сосуда.

ОПРЕДЕЛЕНИЕ

Ненасыщенный пар - пар, не достигший состояния динамического равновесия.

У разных жидкостей насыщение пара происходит при различных плотностях, что обусловлено различием в молекулярной структуре, т.е. различием сил межмолекулярного взаимодействия. В жидкостях, у которых силы взаимодействия молекул велики (например, в ртути), состояние динамического равновесия достигается при небольших плотностях пара, так как количество молекул, способных покинуть поверхность жидкости, невелико. Наоборот, у летучих жидкостей с малыми силами притяжения молекул, при тех же температурах из жидкости вылетает значительное количество молекул и насыщение пара достигается при большой плотности. Примерами таких жидкостей являются этанол, эфир и др.

Так как интенсивность процесса конденсации пара пропорциональна концентрации молекул пара, а интенсивность процесса испарения зависит только от температуры и резко возрастает с ее ростом, то концентрация молекул в насыщенном паре зависит только от температуры жидкости. Поэтому давление насыщенного пара зависит только от температуры и не зависит от объема. Причем с ростом температуры величина концентрации молекул насыщенного пара и, следовательно, плотность и давление насыщенного пара быстро растут. Конкретные зависимости давления и плотности насыщенного пара от температуры различны для разных веществ и могут быть найдены из справочных таблиц. При этом оказывается, что насыщенный пар, как правило, хорошо описывается уравнением Клайперона-Менделеева. Однако, при сжатии или нагревании масса насыщенного пара изменяется.

Ненасыщенный пар с достаточной степенью точности подчиняется законам идеального газа.

Примеры решения задач

ПРИМЕР 1

Задание В закрытом сосуде вместимостью 0,5 л при температуре находятся в равновесии пары воды и капля воды. Определить массу водяного пара в сосуде.
Решение При температуре давление насыщенного пара равно атмосферному, поэтому Па.

Запишем уравнение Менделеева-Клапейрона:

откуда найдем массу водяного пара:

Молярная масса водяного пара определяется так же, как и молярная масса воды .

Переведем единицы в систему СИ: объем сосуда температура пара .

Вычислим:

Ответ Масса водяного пара в сосуде 0,3 г.

ПРИМЕР 2

Задание В сосуде объемом 1 л при температуре находятся в равновесии вода, водяной пар и азот. Объем жидкой воды много меньше объема сосуда. Давление в сосуде составляет 300 кПа, атмосферное давление 100 кПа. Найти общее количество вещества в газообразном состоянии. Каково парциальное давление азота в системе? Какова масса водяного пара? Какова масса азота?
Решение Запишем уравнение Менделеева-Клапейрона для газовой смеси водяной пар + азот:

откуда найдем общее количество вещества в газообразном состоянии:

Универсальная газовая постоянная .

Переведем единицы в систему СИ: объем сосуда давление в сосуде температура .

Вычислим:

По закону Дальтона, давление в сосуде равно сумме парциальных давлений водяного пара и азота:

откуда парциальное давление азота:

При температуре давление насыщенного пара равно атмосферному, поэтому .