Механизмы для работы на складах взрывчатых веществ. Снаряжение боеприпасов взрывчатыми веществами АО «ГосНИИ«Кристалл» предлагает к поставке

Под снаряжением боеприпасов понимают ряд последовательных операций по наполнению корпусов снарядов, мин, боевых частей реактивных снарядов и ракет, авиабомб и т.д. взрывчатыми веществами. Взрывчатые вещества производятся в порошкообразном виде. В боеприпасах ВВ представляют собой монолит и называются разрывным зарядом. Разрывной заряд изготовляется или непосредственно в камере боеприпаса, или изготовляется заранее, а затем в виде готовых шашек укладывается в камеру боеприпаса.

Наполнение корпусов боеприпасов взрывчатым веществом может производиться различными способами: заливкой , шнекованием , прессованием . Наполнение по первому способу производится заливкой расплавленного жидкого ВВ в корпус снаряда в один или несколько приемов в зависимости от размеров боеприпаса и конфигурации камеры. Чем больше калибр снаряда и отношение диаметра горловины камеры к ее наибольшему диаметру, тем в большее число приемов производится заливка. Качественный литой разрывной заряд должен иметь однородную мелкокристаллическую структуру (без пузырьков, раковин и трещин) и высокую плотность. Для получения однородной мелкокристаллической структуры разрывного заряда заливку ведут при наивыгоднейшем соотношении жидкой и кристаллической фаз в расплавленном ВВ. Последнее достигается так называемой шимозацией ВВ, т.е. энергичным перемешиванием расплавленного ВВ перед заливкой.

Перемешивание ускоряет охлаждение ВВ и начало процесса его кристаллизации, способствует образованию большого числа центров кристаллизации и, следовательно, препятствует появлению крупных кристаллов.

Мелкокристаллическая структура разрывного заряда обеспечивает ему высокую плотность, прочность и безопасность при выстреле, что очень важно, так как такой разрывной заряд может выдержать без разрушения напряжения, развивающиеся в нем под действием инерционных сил при выстреле.

Заряды крупнокристаллической структуры обладают малой прочностью и при выстреле могут разрушаться, что приводит к преждевременным разрывам снарядов в канале ствола орудия или на траектории вследствие воспламенения ВВ от трения при разрушении зарядов.

Чтобы предотвратить образование пузырей и раковин в заряде, жидкое ВВ в корпусе снаряда периодически перемешивают латунным прутом, что способствует удалению пузырьков воздуха.

Трещины в разрывном заряде не допускаются, так как при выстреле в местах расположения трещин возникает значительное трение между частицами заряда, способное вызвать воспламенение ВВ и преждевременный разрыв снаряда в канале ствола при выстреле.
Чтобы не было трещин в заряде, корпуса снарядов перед заливкой предварительно подогревают до температуры помещения, в котором производят заливку, и медленно охлаждают разрывной заряд. Различают кусковую, вибрационную и вакуумную заливки.

Сущность кусковой заливки заключается во введении в камеру боеприпаса вместе с жидким ВВ заранее приготовленных кусков твердого литого ВВ. Заливка кусковым способом обычно ведется следующим образом: вначале в камеру боеприпаса примерно на 1/3 ее объема заливают жидкий тротил, в который затем вводят, утрамбовывая деревянной палочкой, куски ВВ до тех пор, пока они не распределятся по всему объему жидкого ВВ. Этот процесс повторяется до полного заполнения объема камеры.

Кусковой способ ускоряет процесс наполнения корпусов боеприпасов примерно в 2–3 раза по сравнению с обычным способом заливки одним лишь жидким ВВ. Но вследствие неодинаковой плотности получаемой при этом отливки, а также из-за плохого спая кусков с застывшим ВВ данный способ используется лишь для наполнения взрыв-чатым веществом авиабомб, мин, ручных гранат и других видов боеприпасов, разрывных зарядов, которые не подвергаются значительным сотрясениям.

Вибрационная заливка является более совершенным методом сна-ряжения боеприпасов. Вибрационная заливка заключается в использовании явления вибрации для более качественного распределения и уплотнения кусков ВВ в камере боеприпаса и ускорении процесса наполнения камеры. Вибрации с определенной частотой подвергается корпус боеприпаса в процессе его наполнения с помощью специального устройства.

Вакуумная заливка преследует ту же цель, что и вибрационная. Для повышения качества заполнения корпуса и производительности труда перед заполнением ВВ камера боеприпаса вакуумируется.

Снаряжение шнекованием состоит в наполнении камер боеприпасов порошкообразным ВВ при помощи шнек-аппарата. Данный способ является высокопроизводительным и механизированным. Он применяется в основном для наполнения снарядов наземной артиллерии, а также авиабомб и мин. Шнекование не применяется для наполнения боеприпасов гексогеном и тринитротолуолом как в чистом виде, так и во флегматизированном, и в виде смесей их с другими веществами вследствие высокой чувствительности их к трению.

Прессование заключается в изготовлении шашек взрывчатого вещества в специальных матрицах (реже непосредственно в камере боеприпаса) путем одновременного уплотнения всей массы взрывчатого вещества пуансоном. Таким образом, разрывной заряд или его элементы изготовляются заранее, и наполнение камеры боеприпаса заключается во вставке готового разрывного заряда.

Метод образования заряда с изготовлением его непосредственно в камере боеприпаса называется нераздельным. Метод изготовления заряда вне камеры боеприпаса с последующим закреплением его в камере называется раздельным. Раздельный метод в зависимости от способа сборки и закрепления заряда в камере имеет две разновидности: раздельно-шашечный и раздельно-футлярный.

Раздельно-шашечный способ наполнения снарядов широко применяется у нас с начала Великой Отечественной войны и особенно со времени внедрения в валовое производство взрывчатого вещества, которым не могут наполнять корпуса боеприпасов ни способом заливки, ни способом шнекования. Раздельно-шашечный способ наполнения состоит во вставке заранее изготовленных прессованием или отливкой шашек ВВ в камеру корпуса снаряда на том или ином закрепителе (обычно на сплаве парафин–церезин 1:1). При большом числе шашек их склеивают шеллачно-канифольным лаком в сборки по несколько штук в каждой.

Последовательность выполнения операций наполнения снарядов раздельно-шашечным способом следующая. В камеру корпуса вводится определенное количество расплавленного сплава парафин–церезин и вставляется первая шашка (или сборка шашек); при этом количество сплава подбирается так, чтобы он полностью заполнял зазоры между поверхностями шашки (сборки шашек) и камеры. Таким же образом вставляются в камеру остальные шашки или сборки шашек. Затем на заряд кладутся картонные прокладки, и ввинчивается дно. Картонные прокладки заполняют зазор между зарядом и дном; они служат для поджатия заряда в корпусе снаряда, чтобы не допустить перемещения его при выстреле.

Раздельно-футлярный способ наполнения применяется главным образом для снаряжения бронебойных снарядов. Он отличается от раздельно-шашечного способа тем, что прессованные шашки ВВ вставляются вначале в футляр, а затем уже снаряженный футляр вставляется в камеру корпуса снаряда, где закрепляется на сплаве парафина с церезином. Количество сплава подбирается с таким расчетом, чтобы он полностью заполнял зазоры между шашками ВВ и внутренней поверхностью футляра, а также между поверхностью снаряженного футляра и камеры снаряда. Материалами для изготовления футляров могут быть алюминий, картон, пластмасса и др.

При обработке разрывного заряда предусматривается окончательная отделка заряда. При окончательной отделке снарядов наружная поверхность снарядов окрашивается, и на нее наносится отличительная маркировка. Окраска наружной поверхности снарядов приме-няется как антикоррозийное покрытие, а также служит средством распознавания снарядов по их боевому назначению и снаряжению. Готовые снаряды укупориваются.

Изобретение относится к способу изготовления промышленных взрывчатых веществ (ПВВ) на основе порошкообразных, гранулированных и жидких компонентов и может найти применение в горнодобывающей промышленности при изготовлении ВВ. Установка состоит из трех узлов: дозирования, смешивания и упаковки готового продукта. Узел дозирования включает емкости-дозаторы для твердых и жидких компонентов. Узел смешивания включает смеситель барабанного типа циклического действия. Бункер смесителя представляет собой вращающийся барабан, состоящий из верхнего и нижнего усеченных конусов, соединенных между собой цилиндром. На внутренней поверхности верхнего конуса и цилиндра установлены по три пластины с зазором 8-15 мм от корпуса, равноудаленные друг от друга, под углом 30-45 o к оси барабана. Пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o . Узел упаковки готового продукта включает приемный разгрузочный бункер, соединенные с ним мерные емкости, калибровочные вставки, оснащенные шиберами. Установка позволяет изготавливать многокомпонентные ПВВ, осуществлять любой порядок ввода компонентов, проста в эксплуатации. 1 з. п. ф-лы, 2 ил.

Изобретение относится к области производства промышленных взрывчатых веществ (ПВВ) на основе порошкообразных, гранулированных и жидких компонентов и может найти применение в горнодобывающей промышленности для изготовления ПВВ как на местах ведения взрывных работ, так и в условиях изготовления ПВВ на заводах-изготовителях взрывчатых веществ (ВВ). Технология приготовления гранулированных ПВВ весьма проста - она сводится к механическому перемешиванию твердой и жидкой фаз. Технологическая схема изготовления таких ПВВ определяется видом оборудования, применяемого для подготовки, дозирования, смешения компонентов и упаковки готового продукта. Известно производство гранулированных двухкомпонентных ВВ таких, как игданит на основе гранулированной аммиачной селитры и жидкого нефтепродукта на установках УИ-1(2), ИСИ-11 циклического и непрерывного действия, в смесительно-зарядных машинах, например, МЗС-1М, где смешение аммиачной селитры с дизельным топливом осуществляется в шнеко-смесительной камере. Недостатками названных установок является невозможность изготовления многокомпонентных систем. Кроме того, такие смесители не могут обеспечить безопасность изготовления промышленных ВВ, содержащих в своем составе вещества, обладающие повышенной чувствительностью к механическим воздействиям (пороха, ВВ). Известен способ получения взрывчатых смесей и устройство для его осуществления (пат. России N 2111941), которое включает емкости для твердых и жидких компонентов, смеситель с рассеивающей поверхностью и устройство подачи жидкой фазы. В поток твердых частиц на верхнем уровне вводится только дизельное топливо, а на нижнем - только водомасляная эмульсия. Известен способ диффузионно-поточного изготовления простейших взрывчатых смесей (пат. России N 2105951), заключающийся в непрерывной подаче исходных компонентов из бункера через калибровочные выпускные отверстия на поверхность движущегося ленточного транспортера в форме слоевого потока. При этом происходит диффузионное проникновение частиц верхнего слоя в нижний и образуется первичная смесь заданного состава. При свободном падении слоевого потока с транспортера в поток вводится жидкая фаза, превращая его в простейшую взрывчатую смесь с заданным стехиометрическим соотношением компонентов. Недостатками данных установок является низкая степень перемешивания, особенно при изготовлении трех и более компонентных взрывчатых смесей, содержащих в качестве твердой фазы ингредиенты разной плотности и степени измельчения. Кроме того, нельзя изменить порядок ввода жидкой и твердой фаз: жидкая фаза вводится или одновременно с твердой фазой или после предварительного смешения ингредиентов твердой фазы. Известны установки для изготовления гранулированных ВВ таких, как игданит, в которых смешение компонентов осуществляется в смесителях барабанного типа - установка "Миксэнол" фирмы "Нитро Нобель" (Швеция) ("Механизация взрывных работ"/ Под редакцией А. М. Бейсабаева и др. М. , Недра, 1992). Конический барабан смесителя названной установки выполнен из нержавеющей стали и имеет три радиальных ряда лопаток, смонтированных на корпусе барабана. Барабан смонтирован на станине, оснащенной специальным устройством для регулирования частоты вращения, и может быть закреплен под определенным углом для обеспечения загрузки и выгрузки. Смеситель приводится в действие пневмодвигателем, или гидравлическим, или электрическим двигателем. Названная установка принята за прототип. Недостатком установки "Миксэнол" является сложность и неудобство чистки и ремонта его из-за конструктивных особенностей смесителя. Технической задачей изобретения является создание установки для изготовления многокомпонентных ПВВ с улучшенными технико-экономическими показателями за счет интенсификации процесса смешения, оптимизации конструкции перемешивающего органа, улучшения санитарно-гигиенических условий работы обслуживающего персонала, расширения технологических схем производства ПВВ. Необходимо учитывать, что в настоящее время для производства ПВВ используются порошкообразные, гранулированные, чешуйчатые и кристаллические компоненты, значительно отличающиеся по удельному весу (1,5-7,5 г/см 3), например торф и металлическое горючее; размеру частиц (0,004-4 мм), например микросферы перлитового песка, алюминиевая пудра и гранулотол, а массовое соотношение компонентов в составе ПВВ весьма различно. Поставленная задача решена созданием установки для изготовления ПВВ, в которой дополнительно установлены емкости-дозаторы для ввода трех и более сыпучих и жидких компонентов; барабан-смеситель циклического действия выполнен в виде двух усеченных конусов, соединенных цилиндром, и снабжен по внутренней поверхности верхнего конуса и цилиндра тремя пластинами, установленными под углом 30-45 o к оси барабана-смесителя, равноотстоящими друг от друга (через 120 o) с зазором 8-15 мм от его корпуса, пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o , а узел разгрузки выполнен в виде приемного разгрузочного бункера, соединенных с ним мерных емкостей и сменных калибровочных вставок, оснащенных шиберами, что обеспечивает возможность формировать навеску массы ВВ единичной транспортной упаковки с высокой точностью с учетом насыпной плотности ВВ. На фиг. 1 изображена установка для изготовления промышленных взрывчатых веществ, включающая узел дозирования компонентов А, узел смешения Б, узел разгрузки продукта В. Узел дозирования А включает емкости-дозаторы для твердых и жидких компонентов ПВВ. Узел смешения Б включает: 2 - барабан-смеситель, 3 - траверсу, 4 - редуктор, 5 - электродвигатель, 6 - раму, 7 - механизм опрокидывания, 8 - выносной пульт управления, 9 - кнопочный пульт управления. Для фиксации барабана-смесителя предусмотрено запорное устройство. Аппаратура управления электродвигателем барабана-смесителя размещена в выносном электрошкафу с настенным креплением. Предусмотрено также дублирование управления барабана-смесителя непосредственно с рабочего места с помощью кнопочного поста типа КУ-92 во взрывозащищенном исполнении. Узел разгрузки продукта В включает: 10 - приемный разгрузочный бункер, 11 - мерную емкость, 12 - сменную калибровочную вставку, 13 - шибер (верхний ии нижний), 14 - оправку для закрепления упаковки, 15 - единичную транспортную упаковку. На фиг. 2 представлена предлагаемая конструкция барабана-смесителя. Барабан-смеситель выполнен в виде верхнего 16 и нижнего 17 усеченных конусов, соединенных между собой цилиндром 18. На внутренней поверхности верхнего конуса и цилиндра установлены по три пластины 19 с зазором 8-15 мм от их корпусов, равноотстоящие друг от друга (через 120 o) под углом 30-45 o к оси барабана-смесителя. Пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o . Пластины крепятся к поверхности барабана-смесителя болтами или сваркой. Размер пластин, установленных в верхнем конусе, 80х400х2 мм, в цилиндре - 80х150х2 мм. Барабан-смеситель и его внутренние детали выполнены из нержавеющей стали, например, хромоникелевой. Оптимальное расположение пластин авторами установлено экспериментально. Угол наклона пластин, равный 30-45 o к оси барабана-смесителя, обеспечивает максимальную интенсивность перемешивания компонентов. При этом наибольшая равномерность распределения компонентов в готовом ВВ получена при условии смещения пластин 19 верхнего конуса 16 и цилиндра 18 относительно друг друга на 60 o (см. фиг. 2). Установка пластин от корпуса с зазором 8-15 мм позволяет осуществить равномерность смешения компонентов по всему объему барабана смесителя и исключает налипание компонентов на стенки корпуса и пластин. Установка работает следующим образом (фиг. 1). С помощью механизма опрокидывания 7 барабан-смеситель 2 устанавливают на требуемый угол, например 30 o , и в соответствии с рецептурой ПВВ и регламентом техпроцесса осуществляют загрузку компонентов из емкостей-дозаторов 1, после чего с выносного пульта 8 или кнопочного поста управления 9 включают привод вращения барабана-смесителя 5 через редуктор 4. Частота вращения барабана-смесителя 20-40 мин -1 . Время смешения 5-15 мин в зависимости от компонентного состава и порядка ввода компонентов. Угол наклона барабана-смесителя изменяется от 0 до 125 o . Выгрузку готовой продукции осуществляют путем опрокидывания барабана-смесителя в крайнее нижнее положение при включенном приводе вращения до полного его освобождения в приемный разгрузочный бункер 10. Из приемного разгрузочного бункера масса ВВ при открытом верхнем шибере 13 поступает в мерную емкость 11 и калибровочную вставку 12. Таким образом формируется масса ВВ единичной транспортной упаковки. Мерная емкость 11 рассчитана на единичную транспортную упаковку, например 40 кг, при максимально возможной насыпной плотности ВВ. При изготовлении ПВВ другой (меньшей) насыпной плотности навеска (40 кг) корректируется калибровочной вставкой 12, являющейся сменной. Сформированная таким способом в мерной емкости и калибровочной вставке навеска через нижний шибер 13 поступает в транспортную тару, например в многослойный бумажный мешок с полиэтиленовым мешком-вкладышем 15, закрепленным на держателе 14. При вращении барабан-смесителя с установленными в нем пластинами смешиваемый материал подвергается перемещению по сложной траектории за счет воздействия на него сил трения по боковой поверхности барабана-смесителя и пластин и сил гравитации, что приводит в конечном счете к интенсивному перемешиванию. Предлагаемая конструкция барабана-смесителя предотвращает образование застойных зон, расслаивание компонентов и позволяет получать высокое качество смешения. Кроме того, такая конструкция барабана-смесителя облегчает и упрощает чистку оборудования, т. к. не образуется налипание и скопление компонентов смеси на внутренних элементах барабана-смесителя. Установка дополнительных емкостей-дозаторов позволяет изготавливать ПВВ, содержащие более трех компонентов, и осуществлять любой порядок ввода компонентов при изготовлении многокомпонентных взрывчатых смесей, например ввод аммиачной селитры, омасливание ее дизельным топливом при перемешивании, опудривание мелкодисперсным компонентом (микросферами, торфом и др.) с последующим смешением с другими гранулированными компонентами (гранулотолом, чешуйчатым тротилом и др.). Конструкции разгрузочного бункера с мерной и калибровочной емкостями позволяют пр изготовлении ПВВ с различной насыпной плотностью формировать единичную транспортную упаковку с высокой точностью. Предлагаемая установка по изготовлению ПВВ характеризуется высокой безопасностью, надежностью и простотой конструкции и может быть смонтирована как в заводских условиях, так и на специализированных пунктах изготовления ВВ предприятий, ведущих взрывные работы. Установка обеспечивает производительность по готовому продукту 500-1000 кг/ч. С использованием предлагаемой установки изготовлено и поставлено потребителю 100 т взрывчатого вещества на основе гранулированной аммиачной селитры, гранулированного тротила и дизельного топлива; 200 т взрывчатого вещества на основе аммиачной селитры, торфа и дизельного топлива. При изготовлении указанных взрывчатых веществ по согласованию с потребителем использовали аммиачную селитру различной плотности, в том числе гранулированную плотную с насыпной плотностью 0,96 г/см 3 , пористую гранулированную селитру с насыпной плотностью 0,76 м/см 3 и их смесь в различном соотношении. При этом качество изготовленных ВВ, а также масса транспортной упаковки соответствовали требованиям нормативно-технической документации.

Формула изобретения

1. Установка для изготовления промышленных взрывчатых веществ, включающая емкости-дозаторы для ввода аммиачной селитры и дизельного топлива, барабан-смеситель циклического действия, узел разгрузки, отличающаяся тем, что барабан-смеситель выполнен в виде двух усеченных конусов, соединенных цилиндром, и снабжен по внутренним поверхностям верхнего конуса и цилиндра равноотстоящими друг от друга тремя прямоугольными пластинами, установленными под углом 30-45 o к оси барабана-смесителя с зазором 8-15 мм от его корпуса, причем пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o , а узел разгрузки выполнен в виде приемного разгрузочного бункера, соединенных с ним мерных емкостей и сменных калибровочных вставок, оснащенных шиберами. 2. Установка по п. 1, отличающаяся тем, что она дополнительно содержит емкости-дозаторы для ввода сыпучих и жидких компонентов.

В.Б. Иоффе, д.т.н., технический директор ЗАО «НИТРО СИБИРЬ»;

Л.А. Круглов, журналист

Группа компаний «НИТРО СИБИРЬ» – крупнейший на российском рынке производитель промышленных взрывчатых веществ и технологического оборудования для их производства и применения, признанный лидер отрасли в разработке и применении новых технологий буровзрывных работ.

Головная организация – ЗАО «НИТРО СИБИРЬ» была создана в 1990 г. В настоящее время в группу компаний входят более 20 предприятий, представленных во всех крупных горнодобывающих регионах России, а также в Финляндии, Монголии, Австралии. Ведется работа по реализации проектов в Северной Америке и Африке.

Сфера специализации компании охватывает:

  • производство промышленных ВВ;
  • проектирование, создание и эксплуатацию производственных комплексов по изготовлению промышленных ВВ;
  • разработку и создание технологического оборудования для применения промышленных ВВ, включая смесительнозарядную и доставочную технику;
  • ведение буровзрывных работ на основе оригинальной методологии расчета рациональных параметров БВР;
  • поставку сырья и запасных частей для производственных комплексов по изготовлению промышленных ВВ.

Производственные мощности Группы включают различные типы технологических линий: стационарные, мобильные, для выпуска патронированных и льющихся ЭВВ, ANFO и более 100 ед. смесительно-зарядной и доставочной техники. Общий объем произведенных промышленных взрывчатых веществ в 2013 г. превысил 323 тыс. т, что составило 1/3 от всех промышленных ВВ, произведенных на территории РФ. Объем выполненных буровзрывных работ в 2013 г. составил 100 млн м3 взорванной горной массы.

Без буровзрывных работ не может обойтись ни одно горнодобывающее предприятие, разрабатывающее полускальные и скальные горные породы и руды, а также каменные угли. С одной стороны, от высокого качества и надежности применяемых взрывчатых веществ (ВВ) зависит не только производительность, но и промышленная безопасность этих предприятий. С другой стороны, горно-геологические и горнотехнические условия различных предприятий предъявляют соответствующие специфические требования к ВВ.

Разработка промышленных ВВ, технологий их применения, оборудования для производства и доставки к местам использования – сложная и многогранная работа, и компаний, работающих в этой области, в России немного. Крупнейшей из них является Группа Компаний «НИТРО СИБИРЬ», объем производства ВВ которой только в 2013 г. превысил 323 тыс. т.

В состав ГК «Нитро Сибирь» входит 17 предприятий, расположенных в разных регионах России и в Финляндии, производящих промышленные ВВ и буровзрывные работы. В 2013 г. запущено производство патронированных эмульсионных взрывчатых веществ (ЭВВ) в Австралии на мощностях дочернего предприятия «НИТРО СИБИРЬ - Австралия» (г. Калгурли, Австралия).

Производство и номенклатура ЭВВ

Оригинальные рецептуры эмульсионных ВВ типа «Сибирит», принадлежащих на правах ноу-хау ЗАО «Нитро Сибирь», предусматривают возможность использования при их производстве как отечественного, так и импортного сырья и материалов.

«Сибирит-1000» и -1200 – промышленные ЭВВ 1 класса, изготавливаемые в смесительно-зарядных машинах типа МСЗ. Они предназначаются для заряжания механизированным способом взрывных скважин пород любой крепости и степени обводненности при производстве массовых взрывов в карьерах и в строительстве.

Патронированное ЭВВ «Сибирит ПСМ-7500» предназначено для применения на открытых горных работах в условиях, где затруднено применение механизированного заряжания, в скважинных зарядах при любой степени обводненности скважин, включая применение в породах и рудах, содержащих сульфиды.

Взрывчатые вещества семейства «Сибирит СМ» предназначены для взрывной отбойки методом скважинных зарядов на земной поверхности горных пород, не содержащих сульфиды, и с внутрискважинными водами с показателем кислотности рН более 4.

В семейство «Сибирит СМ» входят три марки, представляющие смесь «Сибирит-1200» и аммиачной селитры, омасленой нефтепродуктом при различном соотношении между ними. У «Сибирит СМ-7500», предназначенного для скважин любой степени обводненности, соотношение составляет 75/25; у «Сибирит СМ-5000», предназначенного для этих же целей, – 50/50 и у предназначенного для сухих и осушенных скважин «Сибирит СМ-2500» – 25/75. Патронированный «Сибирит-1200П» изготавливается в условиях стационарного производства и предназначен для применения на открытых горных работах во всех горно-геологических условиях и климатических регионах России в качестве скважинных зарядов при любой степени обводненности скважин, в т.ч. по породам, содержащим сульфиды. «Сибирит-2500 РЗ» изготавливается в процессе одновременного раздельного механизированного заряжания скважины с дневной поверхности «Сибирит-1200» и гранулитом НП или УП, или игданитом. Предназначен для взрывания сухих и слабообводненных (с высотой водяного столба до 3–4 м) взрывных скважин, в т.ч. по породам и рудам, содержащим сульфиды, если содержание пирита в них не превышает 30%, а показатель рН скважинной воды не ниже 4.0, во всех климатических регионах России.

«Сибирит-П» – вещество, предназначенное для применения в патронированном виде в качестве промежуточных детонаторов при инициировании детонации в скважинных зарядах при любой степени обводненности скважин, а также в качестве зарядов для вторичного дробления негабаритов.

Эмульсионные ВВ «Сибирит» отличаются высокой водоустойчивостью и химической совместимостью с горными породами, что позволяет их применять в любых горно-геологических условиях. Низкая чувствительность к механическим воздействиям позволяет полностью механизировать процессы их производства и заряжания при минимальном уровне воздействия на окружающую среду и здоровье человека при их изготовлении и применении. Крайне важен высокий уровень террористической защищенности ЭВВ, обусловленный разделением операций технологического процесса на стадии подготовки невзрывчатой эмульсии и изготовления из нее взрывчатого состава путем сенсибилизации (регулирования чувствительности компонента к инициирующему воздействию) в процессе завершающей стадии – заряжания скважин или шпуров.

Горняки отмечают высокую эффективность применения ЭВВ «Сибирит», в том числе по крепким породам, за счет высокого КПД взрывчатого превращения. Полнота выделения энергии стала результатом разработки рецептур на основе оригинальных эмульгаторов и применения специального оборудования для получения эмульсии с оптимальной дисперсностью и другими эксплуатационными характеристиками, а также для управления режимом ее сенсибилизации.

Так как для производства «Сибирит» используется доступное отечественное сырье, которое отличает меньшая ценовая зависимость от конъюнктуры сырьевого рынка.

Разработанный ЗАО «НИТРО СИБИРЬ» гибкий технологический процесс производства «Сибирит» основан на постоянном входном, пооперационном и выходном контроле и позволяет нейтрализовать нестабильность качественных показателей сырья отечественного производства и обеспечить производство ЭВВ с высокими эксплуатационными характеристиками и уровнем безопасности. Наряду с разрешением на применение на территории РФ, ЭВВ «Сибирит» сертифицированы для применения в странах Евросоюза.

Механизация зарядки скважин эмульсионными ВВ

Эмульсионные ВВ – опасный и сложный в доставке груз, не допускающий и не прощающий небрежности в обращении. Сами по себе компоненты ЭВВ (эмульсия и газогенерирующая добавка) – безопасны, но, смешавшись в процессе перевозки, могут натворить бед. В связи с этим их доставка осуществляется всегда в разных емкостях. Для этого созданы специальные смесительно-зарядные и доставочные машины.

На месте подготовки взрывных работ смесь готовится в процессе заряжания скважины полностью автоматически по заданной программе в зависимости от характеристики скважины и требований взрывников.

На всех стадиях процесса изготовления ЭВВ поддерживается необходимая температура смешиваемых компонентов. Поэтому блок емкостей оборудован теплоизоляцией, выполненной из негорючего теплоизоляционного материала, а шланги, по которым смесь подается в скважину, в зимнее время прогреваются горячей водой. Глубина скважин может достигать 65 м, а диаметр от 75 мм до 320 мм. По мере заполнения скважины смесью шланг автоматически извлекается из скважины со скоростью подъема уровня смеси. Чтобы смесь свободно протекала по шлангу, его постоянно увлажняют, и вода для этого тоже доставляется к скважине смесительно-зарядной машиной.

С целью уменьшения последствий аварийных ситуаций машины оборудуются независимой системой пожаротушения, эмульсионная емкость имеет выплавные люки и разрывную мембрану, автоматическая система управления не допускает выхода параметров технологического процесса за допустимые пределы.

Точность соблюдения пропорций компонентов не должна иметь отклонений более 1% (!). Компания «НИТРО СИБИРЬ» выпустила несколько десятков МСЗ на шасси автомобилей БЕЛАЗ, КАМАЗ, МАЗ, Scania, MAN, и потребность в них – велика!

Выпуск автомобилей для перевозки ВВ, СВ и заряжания скважин начался в 1996 г. с создания машины МСЗ-8 на шасси КрАЗ. Опыт, полученный во время ее эксплуатации, лег в основу разработки эксплуатационных и технических требований к конструкции машин и стал основой для разработки техники последующих поколений.

Затем последовала машина МСЗ-16 общей массой перевозимых компонентов 16 т. Конструкция позволяет «подкатывать» под неё как трёхосные, так и четырёхосные шасси КАМАЗ, MAN или Scania. В этом случае будет обеспечиваться соответствие полностью загруженного автомобиля нормам Правил перевозки крупногабаритных и тяжеловесных грузов.

Общая масса компонентов, перевозимых машиной МСЗ-15 – 15 т. Она способна транспортировать все виды невзрывчатых компонентов смесей «Сибирит» СМ-2500, -5000 и j2500РЗ (эмульсии «Сибирит-1000» или -1200, газогенерирующую добавку, аммиачную селитру и нефтепродукты), приготавливать ЭВВ и заряжать скважины на открытых горных разработках. Конструкция емкостей позволяет полностью использовать грузоподъемность шасси при различных соотношениях эмульсии и аммиачной селитры в емкостях, установленных на весовой системе, и изготавливать ЭВВ различного состава. Навесное оборудование может монтироваться на шасси КАМАЗ, МАЗ, Scania и полноприводном шасси MAN 6k6.

Машина смесительно-зарядная МСЗ-14МТ предназначена не только для транспортирования компонентов, но, при необходимости, для изготовления эмульсии и её перегрузки в смесительно-зарядные и доставочные автомобили. Машина также может изготавливать ЭВВ на месте заряжания скважин в карьерах. Машина позволяет автономно производить эмульсию «Сибирит» непосредственно на взрываемом блоке, в карьере и на другой площадке, отвечающей требованиям промышленной безопасности. Блок емкостей машины включает резервуары для раствора окислителя, масляной фазы, газогенерирующей добавки и для вспомогательных веществ, а также отсек для технологического оборудования. Из единичной загрузки компонентами в автоматическом режиме машина изготавливает 14 т эмульсии и заряжает скважины, причем процесс изготовления эмульсии не прерывается во время переезда от одной скважины к другой. Машина может базироваться на шасси автомобилей Scania 6k4 или MAN 6k4, 6k6, подготовленных для перевозки опасных грузов.

Используя весь накопленный опыт, в 2013 г. специалисты «НИТРО СИБИРЬ» создали и приступили к выпуску новой машины МСЗ-16 (6872) на шасси MAN TGS 8k4, которая заметно отличается от машин предыдущих поколений. В базовой комплектации шасси поставляется с 16-ступенчатой КПП фирмы ZF, которая обеспечивает высокие экономичность и ходовые качества машины. В ходе доработки шасси под комплекс МСЗ был разработан и установлен специальный надрамник, кронштейн запасного колеса, защита радиатора из стали толщиной 9 мм.

Машина может также выпускаться на базе полноприводных шасси повышенной проходимости MAN 6k6 или 8k8.

Конфигурация резервуара эмульсии обеспечивает минимальные остатки после её разгрузки. В нижней части блок резервуаров с обеих сторон оборудован нишами с технологическим оборудованием. Для снижения тепловых потерь наружные поверхности блока резервуаров покрыты теплоизоляцией.

Для особо суровых арктических условий эксплуатации машина МСЗ-16 (6872) комплектуется арктическим пакетом, специально разработанным компанией Toni Maurer GmbH & Co. (Германия).

МСЗ-16 (6872) – на шасси МАН 8k4 получила цепь заземления, автоматическую систему пожаротушения двигателя, боковую и заднюю защиту. Приводы исполнительных механизмов и агрегатов машины, включая шнек резервуара, – гидравлические.

Система автоматического дозирования (САД) обеспечивает включение, контроль и отключение технологического оборудования, автоматическое или ручное поддержание расхода компонентов в рамках заданных значений, отгрузку заданного количества ЭВВ в скважину, предотвращает возникновение опасных режимов работы машины. Управляется она с размещенной в кабине панели оператора, укомплектованной сенсорным дисплеем для ввода и вывода информации об основных параметрах работы оборудования с возможностью дублирования ручным режимом.

Машина компактнее и маневреннее предшественниц. Это крайне важно – ведь заряжать скважины приходится на ограниченных площадях. На новинке шланговый барабан с выдвижной стрелой переместили с задней площадки рамы в пространство за кабиной, перед емкостью с эмульсией, снабдили машину выносным пультом управления.

Всеми рабочими процессами управляет один водитель-оператор, раньше же экипаж МСЗ состоял из двух человек.

Система подачи в емкости эмульсии и ГГД в полевых условиях из цистерн машин-доставщиков позволяет эксплуатировать машину на больших (до 1500 км) удалениях от стационарных заводов. Максимальная скорость движения 85 км/ч ограничена в соответствии с требованиями правил ЕЭК ООН № 89 и позволяет эксплуатировать машину на федеральных дорогах общего пользования для доставки ВВ на любые расстояния.

Самая мощная машина МСЗ-20 базируется на двухосном шасси карьерного самосвала БЕЛАЗ грузоподъемностью не менее 30 т и предназначена для заряжания эмульсиями «Сибирит» обводненных скважин на открытых горных разработках, в т. ч. методом «под столб воды».

В качестве вспомогательного компонента для обеспечения работы смесительно-зарядного оборудования используется водяное орошение (ВО). При температуре окружающего воздуха ниже –5°С используется специальный раствор, а выше –5°С используется вода.

Машина МСЗ-16Гр на шасси автомобиля КАМАЗ-6540 или MAN 8k4, 8k8 предназначена для транспортирования компонентов ВВ типа «Гранулит» (гранулированной аммиачной селитры и нефтепродукта), приготовления из них ВВ и заряжания в автоматическом режиме скважин. Для загрузки аммиачной селитры из пластиковых контейнеров (бигбэгов) машина оборудована краном-манипулятором грузоподъемностью 900 кг. Бункеры для аммиачной селитры оборудованы весовыми системами.

Конструкция навесного оборудования и шасси обеспечивают соответствие машины полной грузоподъемностью 16 т правилам перевозки крупногабаритных и тяжеловесных грузов.

Машины для магистральных перевозок компонентов ЭВВ

Для повышения автономности работы машин семейства МСЗ в условиях крупных карьеров компания «НИТРО СИБИРЬ» разработала и выпускает серию полуприцеповцистерн для доставки и хранения на месте невзрывчатых компонентов ЭВВ типа «Сибирит».

В начале 2000-х годов было изготовлено несколько доставщиков МТ-20, на которых отрабатывались конструкторские и технологические принципы производства и эксплуатации оборудования, которое должно обеспечивать, поддерживать и строго контролировать условия хранения взрывчатых веществ в полевых условиях.

МТ-20 предназначена для транспортирования от завода до горного предприятия невзрывчатых компонентов «Сибирит»: эмульсии, газогенерирующей добавки и раствора водяного орошения или воды. Цистерна грузоподъемностью до 20 т изготовлена из нержавеющей стали и снабжена теплоизоляцией из минеральной ваты с кожухом из алюминиевого или стального листа с антикоррозийным покрытием изнутри и снаружи. Теплоизоляция толщиной до 100 мм обеспечивает изменение температуры эмульсии не более 15°С за 24 часа при температуре окружающего воздуха до –40°С. Загрузка эмульсии – самотеком, газогенерирующей добавки и воды – через патрубки, выгрузка, соответственно, насосом и сжатым воздухом.

Доставщик в составе автопоезда с тягачом МАЗ-642208 или КАМАЗ-54115 – допущен на дороги общего пользования, карьерные дороги, способен работать при температуре наружного воздуха до –40°С.

Сейчас на смену доставщикам первого поколения пришла модель полуприцепа-цистерны ADR 20-1, предназначенная для транспортирования невзрывчатых компонентов и последующей их перегрузки в смесительно-зарядные машины, работающие на горных предприятиях, удаленных от стационарного пункта на значительные расстояния. Грузоподъемность полуприцепа-цистерны достигает 27 т.

Емкость изготовленного из коррозионностойкого алюминия резервуара для эмульсии 20,0 м3; ГГД - 0,7–1,2 м3 и раствора водяного орошения – 1,2 м3. Благодаря применению легкого сплава снаряженная масса доставщика значительно снижена, грузоподъемность увеличена. Форма эмульсионного резервуара обеспечивает полную выгрузку находящейся в нем эмульсии самотеком.

Полуприцеп-цистерна ADR 20-3 предназначен для перевозки по автомобильным дорогам всех категорий нефтепродуктов и водных растворов солей: разбавленных растворов нитратов и нитритов в диапазоне температур окружающего воздуха от –40°С до +50°С. Теплоизоляция резервуаров толщиной 150 мм препятствует падению температуры перевозимых веществ более чем на 10°С за 8 час при температуре окружающего воздуха до –40°С. На технологических площадках необходимая температура поддерживается электрическими подогревателями с питанием от внешней электрической сети 380 В.

В трех отсеках цистерны из нержавеющей стали 12Х18Н10Т можно перевозить компоненты общей массой 22,5 т при полной массе доставщика 38 т.

Полуприцеп-цистерна оборудован площадкой обслуживания, складным поручнем, лестницей, тремя пеналами для шлангов, в которых находятся шланги соответствующих отсеков, электрическим обогревателем, донными и предохранительными клапанами, промывочным трубопроводом, загрузочными трубопроводами, трубопроводом подачи сжатого воздуха с редуктором давления в отсеки 3,5 м3 и 6,5 м3, тягово-сцепным устройством, соединителями трубопроводов.

Доставщик смонтирован на трехосном полуприцепе, оборудованном подъемным устройством передней оси, стояночным тормозом, опорным устройством, панелью переключателей подъемного устройства оси и стояночного тормоза, устройствами боковой и задней защиты, теплоизолированными шкафами для размещения выкачивающего насоса со сливными трубопроводами и щита управления.

Полуприцеп-цистерна ADR 17-1 предназначен для перевозки водного раствора нитрата аммония (аммиачной селитры) концентрацией 80–93% (по массе).

Для обеспечения максимальной безопасности транспортировки, погрузки и выгрузки компонентов конструкция доставщика полностью исключает их контакт с горючими веществами, восстановителями, кислотами, щелочами, кальцинированной содой, хлоридами, хлоратами, хроматами, нитратами, деревом, маслом и другими материалами и веществами.

Работоспособность полуприцепа-цистерны сохраняется в диапазоне температур окружающего воздуха от –40°С до +50°С, температура раствора нитрата аммония не должна снижаться более чем на 10°С за 8 час при температуре окружающего воздуха до –40°С. В отличие от доставщика ADR 20-3 в этой модели вместо электрического подогрева компонентов применена система жидкостного подогрева на базе дизельного подогревателя.

Модель ADR 17-1 – самая тяжелая во всем модельном ряду доставщиков: при массе перевозимого груза 21 т максимальная разрешенная масса комплекса достигает 46 тонн!

Объем взрывчатых веществ, используемых в горнорудной промышленности России, превышает 1,5 млн т в год. И доставлять их на рудники и в карьеры необходимо в любое время, чтобы ни на минуту не прерывалась технологическая цепь процессов и не пострадал ни один человек. Именно поэтому во главу угла при разработке машин, которые выпускает «НИТРО СИБИРЬ», поставлены их высокая надежность и безопасность.